精英家教网 > 高中数学 > 题目详情

【题目】已知直线.C与直线相切于点A,且点A的纵坐标为,圆心C在直线.

1)求直线之间的距离;

2)求圆C的标准方程;

3)若直线经过点且与圆C交于两点,当△CPQ的面积最大时,求直线的方程.

【答案】1223

【解析】

1)由两直线平等求得,然后由平行线间距离公式得距离.

2)求出点坐标,可得过垂直的直线方程,由此可得圆心坐标,得圆半径,从而得圆方程;

3)利用时,面积最大.从而圆心到直线的距离为,从而求得直线方程.

解:(1)∵两条线平行,

直线方程为,即

2)∵

,∴

设过Al2垂直的直线方程为

∴过Al2垂直的直线方程为

,∴圆心为(00),半径为

∴圆C的标准方程为

3)∵

∴当,即时,面积最大.此时,圆心到直线的距离为

显然直线满足题意,

当直线斜率存在时,设方程为,即

,解得,直线方程为,即.

∴直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,函数是区间上的减函数.

(1)求的最大值;

(2)若上恒成立,求的取值范围;

(3)讨论关于的方程的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近年的宣传费,和年销售量的数据作了初步处理,得到下面的散点图及一些统计量的值,表中

(Ⅰ)根据散点图判断,,哪一个宜作为年销售量关于年宣传费的回归方程类型(给出判断即可,不必说明理由);

(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立关于的回归方程;

(Ⅲ)已知这种产品的年利润的关系为,根据(Ⅱ)的结果回答下列问题:

(1)当年宣传费时,年销售量及年利润的预报值时多少?

(2)当年宣传费为何值时,年利润的预报值最大?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】庙会是我国古老的传统民俗文化活动,又称“庙市”或 “节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:

甲说:“我或乙能中奖”; 乙说:“丁能中奖”;

丙说:“我或乙能中奖”; 丁说:“甲不能中奖”.

游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小王想进行理财投资,根据长期收益率市场顶测,投资A类产品和B类产品的收益分别为(万元),它们与投资额x(万元)存在如下关系式:,小王准备将200万元资金投入AB两类理财产品,公司要求每类产品的投资金额不能低于25万元

1)若对B类产品的投资金额为x(万元),求总收益y(万元)关于x的函数关系式;

2)请你帮助小王预算如何分配投资资金,才能使总收益最大,并求出最大总收益.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】重庆市推行“共享吉利博瑞车”服务,租用该车按行驶里程加用车时间收费,标准是“1元/公里0.2元/分钟”.刚在重庆参加工作的小刘拟租用“共享吉利博瑞车”上下班,同单位的邻居老李告诉他:“上下班往返总路程虽然只有10公里,但偶尔开车上下班总共也需花费大约1小时”,并将自己近50天的往返开车的花费时间情况统计如表:

将老李统计的各时间段频率视为相应概率,假定往返的路程不变,而且每次路上开车花费时间视为用车时间.

(1)试估计小刘每天平均支付的租车费用(每个时间段以中点时间计算);

(2)小刘认为只要上下班开车总用时不超过45分钟,租用“共享吉利博瑞车”为他该日的“最优选择”,小刘拟租用该车上下班2天,设其中有天为“最优选择”,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=|ax-2|+lnx(其中a为常数)

1)若a=0,求函数gx=的极值;

2)求函数fx)的单调区间;

3)令Fx=fx-,当a≥2时,判断函数Fx)在(01]上零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,直线不过原点O且不平行于坐标轴, 有两

个交点AB,线段AB的中点为M.

1)若,点K在椭圆上, 分别为椭圆的两个焦点,求的范围;

2)证明:直线的斜率与的斜率的乘积为定值;

3)若过点,射线OM交于点P,四边形能否为平行四边形?

若能,求此时的斜率;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场在一部向下运行的手扶电梯终点的正上方竖直悬挂一幅广告画.如图,该电梯的高AB为4米,它所占水平地面的长AC为8米.该广告画最高点E到地面的距离为10.5米,最低点D到地面的距离6.5米.假设某人的眼睛到脚底的距离MN为1.5米,他竖直站在此电梯上观看DE的视角为θ

(1)设此人到直线EC的距离为x米,试用x表示点M到地面的距离;

(2)此人到直线EC的距离为多少米时,视角θ最大?

查看答案和解析>>

同步练习册答案