【题目】已知抛物线,过焦点F的直线l与抛物线分别交于A、B两点,O为坐标原点,且.
(1)求抛物线的标准方程;
(2)对于抛物线上任一点Q,点P(2t,0)都满足|PQ|≥2|t|,求实数t的取值范围.
【答案】(1) ;(2)(﹣∞,]
【解析】
(1)设出过焦点F的直线l的方程,与抛物线方程联立,利用一元二次方程根与系数关系,结合,可以求出抛物线的标准方程;
(2)设出点Q坐标,根据|PQ|≥2|t|,根据点Q横坐标的取值范围,结合不等式的性质可以求出实数t的取值范围.
(1)抛物线的焦点F(,0),设直线l的方程为x=my,
设A(x1,y1),B(x2,y2),联立抛物线方程可得y2﹣2pmy﹣p2=0,
可得,
则 ,
由,可得
解得p,即抛物线的方程为y2=x;
(2)设点Q的坐标为(x0,y0),有y02=x0,
由|PQ|≥2|t|,即2|t|,整理可得x02﹣4tx0+y02≥0,
即x02﹣4tx0+x0≥0,可得x0(x0﹣4t+1)≥0,
由x0≥0,可得x0﹣4t+1≥0,即1﹣4t≥0,可得t,
则t的取值范围是(﹣∞,].
科目:高中数学 来源: 题型:
【题目】已知椭圆(常数),P是曲线C上的动点,M是曲线C的右顶点,定点A的坐标为.
(1)若M与A重合,求曲线C的焦距.
(2)若,求的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数在其图象上存在不同的两点,,其坐标满足条件: 的最大值为0,则称为“柯西函数”,则下列函数:① :②:③:④.
其中为“柯西函数”的个数为( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0),四点P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M过两点A(1,﹣1),B(﹣1,1),且圆心M在x+y﹣2=0上,
(Ⅰ)求圆M的方程;
(Ⅱ)设P是直线x+y+2=0上的动点.PC,PD是圆M的两条切线,C,D为切点,求四边形PCMD面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)的一个顶点为A(2,0),离心率为.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为时,求k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com