精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱中,侧棱底面,且各棱长均相等, 分别为棱的中点.

(1)证明平面

(2)证明平面平面

(3)求直线与平面所成角的正弦值.

【答案】(1)见解析;(2)见解析;(3)

【解析】试题分析:(1)连接,根据平几知识得四边形为平行四边形,即得,根据线面平行判定定理得结论(2)先根据正三角形性质得,再根据线面垂直条件得,可得平面,最后根据面面垂直判定定理得结论(3)过点,则根据面面垂直性质定理得平面.即为直线与平面所成的角.最后通过解三角形得直线与平面所成角的正弦值.

试题解析:(1)证明:如图,在三棱柱中, ,且,连接,在中,因为分别为的中点,

所以

又因为的中点,可得即四边形为平行四边形,所以.

平面 平面所以平面.

2证明:由于底面是正三角形, 的中点

又由于侧棱底面 平面所以

因此平面平面

所以平面平面.

3解:在平面内,过点交直线于点连接

由于平面平面而直线是平面与平面的交线,故平面.由此得为直线与平面所成的角.

设棱长为可得,易得.

.所以直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆上

)求椭圆的方程

设动直线与椭圆有且仅有一个公共点,判断是否存在以原点为圆心的圆,满足此圆与相交于两点 (两点均不在坐标轴上),且使得直线的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实常数).

)若的极值点,求实数的取值范围.

)讨论函数上的单调性.

)若存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市小型机动车驾照“科二”考试中共有5项考查项目,分别记作①,②,③,④,⑤.

(1)某教练将所带10名学员“科二”模拟考试成绩进行统计(如表所示),并计算从恰有2项成绩不合格的学员中任意抽出2人进行补测(只测不合格的项目),求补测项目种类不超过3()项的概率.

(2)“科二”考试中,学员需缴纳150元的报名费,并进行1轮测试(按①,②,③,④,⑤的顺序进行);如果某项目不合格,可免费再进行1轮补测;若第1轮补测中仍有不合格的项目,可选择“是否补考”;若补考则需缴纳300元补考费,并获得最多2轮补测机会,否则考试结束;每1轮补测都按①,②,③,④,⑤的顺序进行,学员在任何1轮测试或补测中5个项目均合格,方可通过“科二”考试,每人最多只能补考1次,某学院每轮测试或补考通过①,②,③,④,⑤各项测试的概率依次为且他遇到“是否补考”的决断时会选择补考.

①求该学员能通过“科二”考试的概率;

②求该学员缴纳的考试费用的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10.设小圆弧所在圆的半径为米,圆心角为(弧度).

1)求关于的函数关系式;

2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4/米,弧线部分的装饰费用为9/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时, 取得最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥中,侧面是边长为的正三角形,且与底面垂直,底面的菱形, 的中点, 的中点.

(1)求证:

(2)求与平面所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,( )是偶函数.

(1)求的值;

(2)设函数,其中.若函数的图象有且只有一个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的一系列对应值如下表:

(1)根据表格提供的数据求函数的一个解析式;

(2)根据(1)的结果,若函数周期为,当时,方程 恰有两个不同的解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在用二次法求方程3x+3x-8=0在(12)内近似根的过程中,已经得到f1)<0f1.5)>0f1.25)<0,则方程的根落在区间(  )

A. B. C. D. 不能确定

查看答案和解析>>

同步练习册答案