精英家教网 > 高中数学 > 题目详情
若关于x的方程2cos2x-4sinx+4k+5=0有解,则实数k的取值范围是
 
分析:将原方程可化为k=(sinx+
1
2
)2-2
,再由-1≤sinx≤1,求得-2≤(sinx+
1
2
)2-2≤
1
4
,从而求得实数k范围.
解答:解:原方程可化为k=(sinx+
1
2
)2-2

∵-1≤sinx≤1
-2≤(sinx+
1
2
)2-2≤
1
4

∴实数k的取值范围是[-2,
1
4
]

故答案为:[-2,
1
4
]
点评:本题主要考查方程根的问题转化为函数的值域求解,还涉及了三角函数,二次函数值域的求法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(1,1),
q
=(1,0),<
n
p
>=
π
2
m
n
=-1;若△ABC的内角A,B,C依次成等差数列,且A≤B≤C;
(1)若关于x的方程sin(2x+
π
3
)=
m
2
在[0,B]上有相异实根,求实数m的取值范围;
(2)若向量
p
=(cosA,2cos2
C
2
),试求|
n
+
p
|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•九江二模)已知函数f(x)=sin(
π
4
x-
π
6
)-2cos2
π
8
x+1,x∈R

(1)求函数f(x)的最小正周期及单调递增区间;
(2)若关于x的方程4f2(x)-mf(x)+1=0在x∈(
4
3
,4)
内有实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程2cos2(π+x)-sinx+a=0有实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量数学公式=(1,1),数学公式=(1,0),<数学公式数学公式>=数学公式数学公式=-1;若△ABC的内角A,B,C依次成等差数列,且A≤B≤C;
(1)若关于x的方程sin(2x+数学公式 )=数学公式 在[0,B]上有相异实根,求实数m的取值范围;
(2)若向量数学公式=(cosA,2cos2 数学公式),试求|数学公式|的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
m
=(1,1),
q
=(1,0),<
n
p
>=
π
2
m
n
=-1;若△ABC的内角A,B,C依次成等差数列,且A≤B≤C;
(1)若关于x的方程sin(2x+
π
3
)=
m
2
在[0,B]上有相异实根,求实数m的取值范围;
(2)若向量
p
=(cosA,2cos2
C
2
),试求|
n
+
p
|的取值范围.

查看答案和解析>>

同步练习册答案