精英家教网 > 高中数学 > 题目详情

已知函数f(x)是定义在[-3,3]上的奇函数,且当x∈[0,3]时,f(x)=x|x-2|

⑴在平面直角坐标系中,画出函数f(x)的图象
⑵根据图象,写出f(x)的单调增区间,同时写出函数的值域.

(1)图见试题解析;(2)单调增区间为;值域为

解析试题分析:要作出函数的图象,必须把函数解析式化解,即去掉绝对值符号,化为一般的分段函数,时,对于,可以根据奇函数的定义,求出的解析式,然后作出函数的图象,也可先作出时图象,然后根据奇函数的图象关于原点对称这个性质,得出时的图象.
试题解析:(1)图象如下图,

(2)单调增区间为;值域为
考点:1、函数的图象;2、单调区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数对任意,都有,当时, 
(1)求证:是奇函数;
(2)试问:在时 是否有最大值?如果有,求出最大值,如果没有,说明理由.
(3)解关于x的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数的值域为,求实数的取值范围;
(2)当时,函数恒有意义,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且
(1)求的值,并确定函数的定义域;
(2)用定义研究函数范围内的单调性;
(3)当时,求出函数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设定义在上的奇函数
(1).求值;(4分)
(2).若上单调递增,且,求实数的取值范围.(6分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数).
(1)讨论的奇偶性;
(2)当时,求的单调区间;
(3)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的奇函数,且上是减函数,解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)对于任意实数恒成立,求的最大值;
(2)若方程有且仅有一个实根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)设,,证明:在区间内存在唯一的零点;
(2) 设,若对任意,有,求的取值范围;
(3)在(1)的条件下,设内的零点,判断数列的增减性.

查看答案和解析>>

同步练习册答案