精英家教网 > 高中数学 > 题目详情

【题目】下列命题中正确的个数是(

①由五个面围成的多面体只能是三棱柱;

②由若干个平面多边形所围成的几何体是多面体;

③仅有一组对面平行的五面体是棱台;

④有一面是多边形,其余各面是三角形的几何体是棱锥.

A.0B.1C.2D.3

【答案】B

【解析】

举反例说明①③不正确;②是多面体的定义,正确;由棱锥的结构特征说明④错误.

解:①中,由五个面围成的多面体可以是四棱锥,故①不正确;

②中,根据几何体的性质和结构特征可知,多面体是由若干个平面多边形所围成的几何体,故②正确;

③中,仅有一组对面平行的五面体,可以是三棱柱,故③不正确;

④中,有一个面是多边形,其余各面是三角形的几何体不一定是棱锥,

如图中的几何体,满足条件,但并不是棱锥,故④不正确.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的参数方程为为参数).在以坐标原点为极点,轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线的极坐标方程是.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)设点.若直与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数的极值;

(2)当时,若直线 与曲线没有公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,点,圆的圆心为,半径为2.

(Ⅰ)若,直线经过点交圆两点,且,求直线的方程;

(Ⅱ)若圆上存在点满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数ae2x+(a﹣2) exx.

(1)讨论的单调性;

(2)若有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,底面是边长为4的正三角形,底面,点分别为的中点.

(1)求证:平面平面

(2)在线段上是否存在点,使得直线与平面所成的角的正弦值为?若存在,确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)当时,函数有两个极值点,求的取值范围;

2)若在点处的切线与轴平行,且函数时,其图象上每一点处切线的倾斜角均为锐角,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】举例说明简单随机抽样和分层随机抽样两种抽样方法中,无论使用哪种抽样方法,总体中的每个个体被抽到的概率都相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,底面 的中点.

(1)求证:

(2)求点D与平面的距离.

查看答案和解析>>

同步练习册答案