精英家教网 > 高中数学 > 题目详情

【题目】设点P是曲线 上的任意一点,点P处的切线的倾斜角为α,则α的取值范围为

【答案】[0°,90°]∪[120°,180°)
【解析】解:设点P是曲线 上的任意一点,
∴y'=3x2
∴点P处的切线的斜率k=3x2
∴k
∴切线的倾斜角α的范围为:[0°,90°]∪[120°,180°)
所以答案是:[0°,90°]∪[120°,180°)
【考点精析】关于本题考查的简单复合函数的导数和直线的倾斜角,需要了解复合函数求导:,称则可以表示成为的函数,即为一个复合函数;当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α=0°才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2﹣a2x+3.
(1)若a=2,求f(x)在[﹣1,2]上的最值;
(2)若f(x)在(﹣ ,1)上是减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的长轴长为,且椭圆与圆 的公共弦长为.

(1)求椭圆的方程.

(2)经过原点作直线(不与坐标轴重合)交椭圆于 两点, 轴于点,点在椭圆上,且,求证: 三点共线..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线在平面直角坐标系下的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.

(1)求曲线的普通方程及极坐标方程;

(2)直线的极坐标方程是,射线 与曲线交于点与直线交于点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是为参数).

(Ⅰ)将曲线的极坐标方程化为直角坐标方程;

(Ⅱ)若直线与曲线相交于 两点,且,求直线的倾斜角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈[0,2)时,f(x)= ,若x∈[﹣4,﹣2)时,f(x)≥ 恒成立,则实数t的取值范围是(
A.[﹣2,0)∪(0,1)
B.[﹣2,0)∪[1,+∞)
C.[﹣2,1]
D.(﹣∞,﹣2]∪(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?
(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 是定义在(﹣1,1)上的奇函数,且f( )=
(Ⅰ)求f(x)的解析式,
(Ⅱ)用函数单调性的定义证明f(x)在(﹣1,1)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+mx+n有两个零点﹣1与3.
(1)求出函数f(x)的解析式,并指出函数f(x)的单调递增区间;
(2)若g(x)=f(|x|)在x1 , x2∈[t,t+1]是增函数,求实数t的取值范围.

查看答案和解析>>

同步练习册答案