精英家教网 > 高中数学 > 题目详情
18.已知tan($\frac{π}{4}$+α)=2,tan(α-β)=$\frac{1}{2}$,α∈(0,$\frac{π}{4}$),β∈(-$\frac{π}{4}$,0).
(1)求tanα的值;
(2)求$\frac{1}{2sinαcosα+co{s}^{2}α}$的值;
(3)求2α-β的值.

分析 (1)直接展开两角和的正切求得tanα的值;
(2)把要求值的式子化为正切得答案;
(3)利用“配角”方法求出2α-β的正切值,再由已知角的范围求出2α-β的范围得答案.

解答 解:(1)由tan($\frac{π}{4}$+α)=2,得$\frac{tan\frac{π}{4}+tanα}{1-tan\frac{π}{4}tanα}=2$,即$\frac{1+tanα}{1-tanα}=2$,解得tan$α=\frac{1}{3}$;
(2)$\frac{1}{2sinαcosα+co{s}^{2}α}$=$\frac{si{n}^{2}α+co{s}^{2}α}{2sinαcosα+co{s}^{2}α}$=$\frac{ta{n}^{2}α+1}{2tanα+1}=\frac{\frac{1}{9}+1}{\frac{2}{3}+1}=\frac{2}{3}$;
(3)∵tan(α-β)=$\frac{1}{2}$,tan$α=\frac{1}{3}$,
∴tan(2α-β)=tan[(α-β)+α]=$\frac{tan(α-β)+tanα}{1-tan(α-β)tanα}$=$\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}×\frac{1}{3}}$=1.
又α∈(0,$\frac{π}{4}$),β∈(-$\frac{π}{4}$,0),
∴2α∈(0,$\frac{π}{2}$),$-β∈(0,\frac{π}{4})$,则2α-β∈(0,$\frac{3π}{4}$),
∴2α-β=$\frac{π}{4}$.

点评 本题考查同角三角函数的基本关系式,考查了两角和的正切,体现了转化思想方法在解题中的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)的定义域是(2,6],则函数f(2x)的定义域是(1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.点M($\frac{π}{2},m$)在函数y=sinx的图象上,则m等于(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设a∈{-2,-$\frac{3}{5}$,-$\frac{1}{2}$,-$\frac{1}{3}$,$\frac{1}{2}$,1,2,3},已知幂函数y=xa是奇函数,且在区间(0,+∞)上是减函数,则满足条件的a的值为$-\frac{3}{5}$或$-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=-x2+4x,x∈[0,1],则f(x)的最大值为3,最小值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知α∈(0,$\frac{π}{2}$),sinα=$\frac{3}{5}$,则cosα=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若tan2α+cot2α=2,则sinαcosα=$-\frac{1}{2}$或$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在等比数列{an}中,a6=192,a8=768,求a1,q,S10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求f(x)=$\frac{{x}^{2}+a}{\sqrt{{x}^{2}+1}}$的最小值.

查看答案和解析>>

同步练习册答案