精英家教网 > 高中数学 > 题目详情
14.已知集合U=R,A={x|x2+$\frac{{y}^{2}}{4}$=1},B={y|y=x+1,x∈A},则(∁uA)∩(∁UB)=(-∞,-1)∪(2,+∞).

分析 先根据$\frac{{y}^{2}}{4}$=1-x2≥0求出x的取值范围确定集合A,再根据y=x+1,x∈A确定集合B,最后进行补集与交集的运算.

解答 解:∵A={x|x2+$\frac{{y}^{2}}{4}$=1},∴$\frac{{y}^{2}}{4}$=1-x2≥0,
解得x∈[-1,1],即A=[-1,1],
当x∈[-1,1],y=x+1∈[1,2],所以,B=[0,2],
因此,CUA=(-∞,-1)∪(1,+∞),CUB=(-∞,0)∪(2,+∞),
所以,(∁uA)∩(∁UB)=(-∞,-1)∪(2,+∞),
故填:(-∞,-1)∪(2,+∞).

点评 本题主要考查了集合中交集,补集的运算,涉及一元二次不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.下列各式(各式均有意义)不正确的个数为(  )
①loga(MN)=logaM+logaN   
②loga(M-N)=$\frac{lo{g}_{a}M}{lo{g}_{a}N}$
③${a}^{{-}^{\frac{n}{m}}}=\frac{1}{\root{m}{{a}^{n}}}$ ④(amn=amn    ⑤loganb=-nlogab.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在长方体ABCD-A1B1C1D1中,底面边长AB=3m,BC=4m,高BB1=5m,求:
(1)写出B1D、BC1在平面ABCD内的射影;
(2)对角线DB1与平面ABCD所成角的大小;
(3)BC1与平面ABCD所成角的正切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=log2(ax2-3x+2)
(1)若f(1)<2,求a的取值范围;
(2)若a=1,求满足$(\frac{1}{2})^{t}$<f(3)的t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)的导函数f′(x),满足xf′(x)+2f(x)=$\frac{1}{{x}^{2}}$,且f(1)=1,则函数f(x)的最大值为$\frac{e}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的两个焦点为F1,F2,过F1作垂直于x轴的直线与椭圆相交,其中一个交点为P,则|PF2|的值为(  )
A.$\frac{47}{5}$B.$\frac{34}{5}$C.$\frac{18}{5}$D.$\frac{16}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知x2+y2=4,x>0,y>0,且loga(2+x)=m,loga$\frac{1}{2-x}$=n,则logay等于(  )
A.m+nB.m-nC.$\frac{1}{2}$(m+n)D.$\frac{1}{2}$(m-n)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数在(-∞,+∞)上为单调函数的是(  )
A.y=x2-xB.y=|x|C.y=x3+2xD.y=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知lgx=3,则x=1000.

查看答案和解析>>

同步练习册答案