精英家教网 > 高中数学 > 题目详情

【题目】化简求值
(1)计算: ﹣( 0+0.2 ×( 4
(2)已知x +x =3,求 的值.

【答案】
(1)解: ﹣( 0+0.25 ×( 4

原式=﹣4﹣1+ ×

=﹣5+

=﹣5+2

=﹣3


(2)解:已知:x +x =3,

则(x +x 2=9

x+x1+2=9

x+x1=7

∴(x+x12=49

x2+x2+2=49

x2+x2=47

所以: =


【解析】(1)利用指数幂的运算性质即可得出.(2)因为x +x =3,可以两边同时平方,得x+x1+2=9,从而求出x+x1的值为7,x+x1两边同时平方,x2+x2+2=49,从而求出x2+x2的值,带入计算即可得到答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱ABC﹣A1B1C1的侧面ACC1A1是正方形,AC=BC,点O是侧面ACC1A1的中心,∠ACB= ,M在棱BC上,且MC=2BM=2.

(1)证明BC⊥AC1
(2)求OM的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z1满足(z1﹣2)(1+i)=1﹣i(i为虚数单位),复数z2的虚部为2,且z1z2是实数,
(1)求z1
(2)求z2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=ax在区间[0,2]上的最大值和最小值的和为5,则函数y=logax在区间[ ,2]上的最大值和最小值之差是(
A.1
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的内角的对边分别为,已知

(1)

(2),求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在10件产品中,有2件一等品,4件二等品,4件三等品,从这10件产品中任取3件,求
(1)取出的3件产品中一等品件数X的分布列和数学期望;
(2)取出的3件产品中至多有1件一等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数y=f(x)对任意x都满足f(x+1)=﹣f(x),且当0≤x<1时,f(x)=x,则函数g(x)=f(x)﹣ln|x|的零点个数为个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 展开式中各项的系数之和比各项的二项式系数之和大992.
(1)求展开式中二项式系数最大的项;
(2)求展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)= 是奇函数,
(1)求a的值;
(2)试判断f(x)在(﹣∞,+∞)的单调性,并请你用函数单调性的定义给予证明;
(3)若对任意的t∈R,不等式f(mt2+1)+f(1﹣mt)<0恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案