精英家教网 > 高中数学 > 题目详情

【题目】某校高二理(1)班学习兴趣小组为了调查学生喜欢数学课的人数比例,设计了如下调查方法:

(1)在本校中随机抽取100名学生,并编号1,2,3,…,100;

(2)在箱内放置了两个黄球和三个红球,让抽取到的100名学生分别从箱中随机摸出一球,记住其颜色并放回;

(3)请下列两类学生站出来,一是摸到黄球且编号数为奇数的学生,二是摸到红球且不喜欢数学课的学生。

若共有32名学生站出来,那么请用统计的知识估计该校学生中喜欢数学课的人数比例大约是( )

A. 80%B. 85%C. 90%D. 92%

【答案】A

【解析】

先分别计算号数为奇数的概率、摸到黄球的概率、摸到红球的概率,从而可得摸到黄球且号数为奇数的学生,进而可得摸到红球且不喜欢数学课的学生人数,由此可得估计该校学生中喜欢数学课的人数比例.

解:由题意,号数为奇数的概率为0.5,摸到黄球的概率为,摸到红球的概率为

那么按概率计算摸到黄球且号数为奇数的学生有

共有32名学生站出来,则有12个摸到红球且不喜欢数学课的学生,

不喜欢数学课的学生有:

喜欢数学课的有80个,

估计该校学生中喜欢数学课的人数比例大约是:

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某城市出租车起步价为10元,最长可租乘3km(3km),以后每1km1.6元(不足1km,按1km计费),若出租车行驶在不需等待的公路上,则出租车的费用y()与行驶的里程xkm)之间的函数图象大致为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(I)已知函数f(x)=rx﹣xr+(1﹣r)(x>0),其中r为有理数,且0<r<1.
(1)求f(x)的最小值;
(2)试用(1)的结果证明如下命题:设a1≥0,a2≥0,b1 , b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2
(3)请将(2)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求导公式(xαr=αxα1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,这三天中恰有两天下雨的概率近似为

A.0.35 B.0.25 C.0.20 D.0.15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3.

(1)求f(x)的解析式;

(2)证明:函数y=f(x)的图象是一个中心对称图形,并求其对称中心;

(3)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围成的三角形的面积为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1 , l2分别交C于A,B两点,交C的准线于P,Q两点.
(1)若F在线段AB上,R是PQ的中点,证明AR∥FQ;
(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面命题中,正确的命题有(  )

①若n1,n2分别是不同平面α,β的法向量,n1n2αβ;

②若n1,n2分别是平面α,β的法向量,αβn1·n2=0;

③若n是平面α的法向量,b,cα内两个不共线的向量,abc(λ,μR),n·a=0;

④若两个平面的法向量不垂直,则这两个平面一定不垂直.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:

①若函数在区间上单调递增,则

②若),则的取值范围是

③若函数,则对任意的,都有

④若),在区间上单调递减,则.

其中所有正确命题的序号是______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)是定义在(0,+∞)上的增函数,且满足fxy)=fx)+fy),f(2)=1.

(1)求f(8)的值;

(2)求不等式fx)-fx-2)>3的解集.

查看答案和解析>>

同步练习册答案