A. | (-∞,2] | B. | (-$\frac{4}{3}$,2] | C. | (-∞,1] | D. | (-$\frac{4}{3}$,1] |
分析 根据复合函数的单调性知,g(x)=x2-2(2a-1)x+8在区间[a,+∞)上单调递增且g(x)>0,由此列出不等式组,求出a的取值范围.
解答 解:令g(x)=x2-2(2a-1)x+8,
由题意知:g(x)在区间[a,+∞)上单调递增且g(x)>0,
所以$\left\{\begin{array}{l}{2a-1≤a}\\{g(a){=a}^{2}-2a(2a-1)+8>0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a≤1}\\{-\frac{4}{3}<a<2}\end{array}\right.$,
即-$\frac{4}{3}$<a≤1,
所以a的取值范围是(-$\frac{4}{3}$,1].
故选:D.
点评 本题考查了复合函数的单调性与一元二次不等式的解法与应用问题,是综合性题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,2) | B. | (1,$\sqrt{2}$] | C. | [$\sqrt{2}$,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 周期为π的奇函数 | B. | 周期为π的偶函数 | ||
C. | 周期为2π的奇函数 | D. | 周期为2π的偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $2x+\frac{8}{3}$ | B. | -2x-8 | C. | 2x-8 | D. | $2x+\frac{8}{3}$或-2x-8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x<z<y?? | B. | x<y<z?? | C. | z<y<x?? | D. | x=y<z?? |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com