精英家教网 > 高中数学 > 题目详情

【题目】某生态公园的平面图呈长方形(如图),已知生态公园的长AB=8(km),宽AD=4(km),M,N分别为长方形ABCD边AD,DC的中点,P,Q为长方形ABCD边AB,BC(不含端点)上的一点.现公园管理处拟修建观光车道P﹣Q﹣N﹣M﹣P,要求观光车道围成四边形(如图阴影部分)的面积为15(km2),设BP=x(km),BQ=y(km),
(1)试写出y关于x的函数关系式,并求出x的取值范围;
(2)若B为公园入口,P,Q为观光车站,观光车站P位于线段AB靠近入口B的一侧.经测算,每天由B入口至观光车站P,Q乘坐观光车的游客数量相等,均为1万人,问如何确定观光车站P,Q的位置,使所有游客步行距离之和最大,并求出最大值.

【答案】
(1)解:∵M,N是AD,CD的中点,AB=8,AD=4,BP=x,BQ=y,

∴S△AMP= =8﹣x,S△DMN= =4,S△NCQ= =8﹣2y,S△BPQ=

∵观光车道围成四边形(如图阴影部分)的面积为15(km2),

∴8﹣x+4+8﹣2y+ xy=4×8﹣15=17,

∴y= =

令0<y<4,即0< <4,解得0<x<3或5<x<8.


(2)解:由题意可知0<x<3,

∴x+y=x+ =x+2﹣

令f(x)=x+2﹣ ,则f′(x)=1﹣

令f′(x)=0得x=4﹣

∴当0<x 时.f′(x)>0,当4﹣ <x<3时,f′(x)<0,

∴f(x)在(0,4﹣ )上单调递增,在(4﹣ ,3)上单调递减,

∴当x=4﹣ 时,f(x)取得最大值6﹣2

∴所有游客的步行距离之和的最大值为20000×(6﹣2 )=40000(3﹣ )km.


【解析】(1)根据面积列方程得出y关于x的解析式;(2)利用导数求出x+y的最大值,从而得出步行距离之和的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x﹣y+1=0相交所得的弦长为 ,则圆的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>1,b>0,且a+2b=2,则 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且满足(2b﹣c)cosA﹣acosC=0.
(1)求角A的大小;
(2)若a=4,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(2cosx, sinx), =(3cosx,﹣2cosx),设函数f(x)=
(1)求f(x)的最小正周期;
(2)若x∈[0, ],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x|x﹣a|+2x(a∈R)
(1)当a=4时,解不等式f(x)≥8;
(2)当a∈[0,4]时,求f(x)在区间[3,4]上的最小值;
(3)若存在a∈[0,4],使得关于x的方程f(x)=tf(a)有3个不相等的实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三角形的顶点分别为A(﹣1,3),B(3,2),C(1,0)
(1)求BC边上高的长度;
(2)若直线l过点C,且在l上不存在到A,B两点的距离相等的点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的正弦值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的公比q>1,a1=1,且a1 , a3 , a2+14成等差数列,数列{bn}满足a1b1+a2b2+…+anbn=(n﹣1)3n+1(n∈N*).
(1)求数列{an}和{bn}的通项公式;
(2)令cn=(﹣1)n ,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案