精英家教网 > 高中数学 > 题目详情

已知二次函数y=f(x)的图象经过坐标原点,与x轴的另一个交点为(数学公式),且f(数学公式)=-数学公式,数列{an} 的前n项的和为Sn,点(n,Sn)在函数y=f(x)的图象上.
(1)求函数y=f(x)的解析式;
(2)求数列{an} 的通项公式;
(3)设bn=数学公式,求数列 {bn}的前n项和Tn

解:(1)设f(x)=ax2+bx+c(a≠0)…(1分)
由条件可知,…(2分)
解得a=3,b=-2,c=0,…(3分)
∴f(x)=3x2-2x.…(4分)
(2)又点(n,Sn)在函数y=f(x)的图象上,则Sn=3n2-2n…(5分)
当n=1时,a1=S1=3-2=1.
当n≥2时,an=Sn-Sn-1=3n2-2n-3(n-1)2+2(n-1)=6n-5…(6分)
对于上式,当n=1时,也有a1=1,…(7分)
所以通项公式为an=6n-5…(8分)
(3)由(2)知an=6n-5,bn==…(9分)
∴Tn=b1+b2+b3+…+bn
=
①×得,= ②---(11分)
①-②有=
=6-=--------------------(13分)
∴Tn=7-3-=7---------------------(14分)
分析:(1)设f(x)=ax2+bx+c(a≠0),由条件列方程组,解之即可;(2)由点(n,Sn)在函数y=f(x)的图象上,可得Sn=3n2-2n,由an=Sn-Sn-1可得答案;
(3)由(2)知an=6n-5,bn==,由错位相减法求和即可.
点评:本题考查数列的求和,涉及函数解析式的求解及错位相减法求和,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数y=f(x)(x∈R)的图象过点(0,-3),且f(x)>0的解集(1,3).
(1)求f(x)的解析式;
(2)求函数y=f(sinx),x∈[0,
π2
]
的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)图象的顶点是(-1,3),又f(0)=4,一次函数y=g(x)的图象过(-2,0)和(0,2).
(1)求函数y=f(x)和函数y=g(x)的解析式;
(2)求关于x的不等式f(x)>3g(x)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象关于直线x=2对称,且在x轴上截得的线段长为2.若f(x)的最小值为-1,求:
(1)函数f(x)的解析式;
(2)函数f(x)在[t,t+1]上的最小值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象如图所示:
(1)求函数y=f(x)的解析式;
(2)根据图象写出不等式f(x)>0的解集;
(3)若方程|f(x)|=k有两个不相等的实数根,根据函数图象及变换知识,求k的取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)=x2+bx+c的图象过点(1,13),且函数y=f(x-
12
)
是偶函数.
(1)求f(x)的解析式;
(2)已知t<2,g(x)=[f(x)-x2-13]•|x|,求函数g(x)在[t,2]上的最大值和最小值;
(3)函数y=f(x)的图象上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案