【题目】已知各项均为正数的数列的前n项和为,.
(1)求数列的通项公式;
(2)记,若集合中恰好有3个元素,求实数的取值范围;
(3)若,且,求证:数列为等差数列.
科目:高中数学 来源: 题型:
【题目】为了解全市统考情况,从所有参加考试的考生中抽取4000名考生的成绩,频率分布直方图如下图所示.
(1)求这4000名考生的半均成绩(同一组中数据用该组区间中点作代表);
(2)由直方图可认为考生考试成绩z服从正态分布,其中分别取考生的平均成绩和考生成绩的方差,那么抽取的4000名考生成绩超过84.81分(含84.81分)的人数估计有多少人?
(3)如果用抽取的考生成绩的情况来估计全市考生的成绩情况,现从全市考生中随机抽取4名考生,记成绩不超过84.81分的考生人数为,求.(精确到0.001)
附:①;
②,则;
③.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线的焦点为,直线与抛物线交于两点.
(1)若过点,且,求的斜率;
(2)若,且的斜率为,当时,求在轴上的截距的取值范围(用表示),并证明的平分线始终与轴平行.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分10分)[选修4-5:不等式选讲]
已知函数=|x-a|+(a≠0)
(1)若不等式-≤1恒成立,求实数m的最大值;
(2)当a<时,函数g(x)=+|2x-1|有零点,求实数a的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了贯彻落实中央省市关于新型冠状病毒肺炎疫情防控工作要求,积极应对新型冠状病毒疫情,切实做好2020年春季开学工作,保障校园安全稳定,普及防控知识,确保师生生命安全和身体健康.某校开学前,组织高三年级800名学生参加了“疫情防控”网络知识竞赛(满分150分).已知这800名学生的成绩均不低于90分,将这800名学生的成绩分组如下:第一组,第二组,第三组,第四组,第五组,第六组,得到的频率分布直方图如图所示.
(1)求的值并估计这800名学生的平均成绩(同一组中的数据用该组区间的中点值代表);
(2)该校“群防群控”督查组为更好地督促高三学生的“个人防控”,准备从这800名学生中取2名学生参与督查工作,其取办法是:先在第二组第五组第六组中用分层抽样的方法抽取6名学生,再从这6名学生中随机抽取2名学生.记这2名学生的竞赛成绩分别为.求事件的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)一个盒子里装有三张卡片,分别标记有数字,,,这三张卡片除标记的数字外完全相同。随机有放回地抽取次,每次抽取张,将抽取的卡片上的数字依次记为,,.
(Ⅰ)求“抽取的卡片上的数字满足”的概率;
(Ⅱ)求“抽取的卡片上的数字,,不完全相同”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某地网民浏览购物网站的情况,从该地随机抽取100名网民进行调查,其中男性、女性人数分别为60和40.下面是根据调查结果统计的数据,将日均浏览购物网站时间不低于40分钟的网民称为“网购达人”,已知“网购达人”中女性人数为15人.
日均浏览购物网站时间(分钟) | ||||||
人数 | 2 | 14 | 24 | 35 | 20 | 5 |
(1)根据已知条件完成下面的列联表,并判断是否有99%的把握认为是否为“网购达人”与性别有关;
非网购达人 | 网购达人 | 总计 | |
男 | |||
女 | 15 | ||
总计 |
(2)从上述调查中的“网购达人”中按性别分层抽样,抽取5人发放礼品,再从这5人中随机选出2人作为“最美网购达人”,求这两个“最美网购达人”中恰好为1男1女的概率.
参考公式:,其中.
参考数据:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com