分析 (1)方程:4x-4•2x+3=0即(2x)2-4•2x+3=0,因式分解为(2x-1)(2x-3)=0,即可解出.
(2)利用对数的运算性质及其lg2+lg5=1即可得出.
解答 解:(1)方程:4x-4•2x+3=0即(2x)2-4•2x+3=0,因式分解为(2x-1)(2x-3)=0,∴2x=1或2x=3,解得x=0或x=log23.
(2)原式=lg5(3lg2+3)+3lg22+$lg(\frac{1}{6}×0.06)$
=3lg2(lg5+lg2)+3lg5-2
=3(lg2+lg5)-2
=1.
点评 本题考查了指数与对数的运算性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ($\frac{2}{5}$,$\frac{2}{3}$) | B. | (-∞,$\frac{2}{5}$]∪($\frac{2}{3}$,+∞) | C. | [$\frac{2}{5}$,$\frac{2}{3}$) | D. | [$\frac{2}{5}$,$\frac{2}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{1}{7}$ | B. | $\frac{1}{7}$ | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 减函数且最大值是5 | B. | 增函数且最大值是-5 | ||
C. | 减函数且最大值是-5 | D. | 增函数且最小值是5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $y={log_{\frac{1}{2}}}(x+1)$ | B. | $y={log_2}\sqrt{{x^2}-1}$ | C. | $y={log_2}\frac{1}{x}$ | D. | $y={log_{0.2}}(4-{x^2})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com