精英家教网 > 高中数学 > 题目详情

【题目】已知是定义在上的偶函数,满足,当时,,若,则的大小关系为(

A.B.C.D.

【答案】B

【解析】

根据题意,分析可得函数fx)是周期为2的周期函数,据此可得cf2019)=f1+2×1007)=f1),bflog24.1)=flog24.12)=flog2),结合函数的奇偶性可得a=flog2)=f(﹣log2)=flog2),结合函数解析式可得fx)在[01]上为增函数,据此分析可得答案.

根据题意,fx)满足fx+2)=fx),即函数fx)是周期为2的周期函数,

cf2019)=f1+2×1009)=f1),bflog24.1)=flog24.12)=flog2),

又由fx)为偶函数,则a=flog2)=f(﹣log2)=flog2),

x[01]时,fx)=x3+x,易得fx)在[01]上为增函数,又由0log2log21

则有bac

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,直线交于两点,且与轴交于点.

1)若直线的斜率,且,求的值;

2)若轴上是否存在点,总有?若存在,求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求在区间上的最值;

(2)讨论函数的单调性;

(3)当时,有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)求函数的极值;

(2)问:是否存在实数,使得有两个相异零点?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二十四节气是中国古代的一种指导农事的补充历法,是我国劳动人民长期经验的积累成果和智慧的结晶,被誉为“中国的第五大发明”.由于二十四节气对古时候农事的进行起着非常重要的指导作用,所以劳动人民编写了很多记忆节气的歌谣:春雨惊春清谷天,夏满芒夏暑相连,秋处露秋寒霜降,冬雪雪冬小大寒.《易经》里对二十四节气的晷影长的记录中,冬至和夏至的晷影长是实测得到的,其他节气的晷影是按照等差数列的规律计算出来的,在下表中,冬至的晷影最长为1300寸,夏至的晷影最短为148寸,那么《易经》中所记录的清明的晷影长应为(

A.77.2B.72.4C.67.3D.62.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的奇函数,满足,下面四个关于函数的说法:①存在实数,使关于的方程个不相等的实数根;②当时,恒有;③若当时,的最小值为,则;④若关于的方程的所有实数根之和为零,则.其中说法正确的有______.(将所有正确说法的标号填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.(其中为自然对数的底数)

1)若,且上是增函数,求的最小值;

2)设,若对任意恒有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,底面为矩形,侧面为梯形,.

1)求证:

2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数在点处的切线方程;

2)求函数上的值域;

3)若存在,使得成立,求的最大值.(其中自然常数

查看答案和解析>>

同步练习册答案