精英家教网 > 高中数学 > 题目详情
(2012•黑龙江)选修4-5:不等式选讲
已知函数f(x)=|x+a|+|x-2|
(1)当a=-3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.
分析:(1)不等式等价于
x≤2
3-x+2-x≥3
,或
2<x<3
3-x+x-2≥3
,或
x≥3
x-3+x-2≥3
,求出每个不等式组的解集,
再取并集即得所求.
(2)原命题等价于-2-x≤a≤2-x在[1,2]上恒成立,由此求得求a的取值范围.
解答:解:(1)当a=-3时,f(x)≥3 即|x-3|+|x-2|≥3,即①
x≤2
3-x+2-x≥3
,或②
2<x<3
3-x+x-2≥3

或③
x≥3
x-3+x-2≥3

解①可得x≤1,解②可得x∈∅,解③可得x≥4.
把①、②、③的解集取并集可得不等式的解集为 {x|x≤1或x≥4}.
(2)原命题即f(x)≤|x-4|在[1,2]上恒成立,等价于|x+a|+2-x≤4-x在[1,2]上恒成立,
等价于|x+a|≤2,等价于-2≤x+a≤2,-2-x≤a≤2-x在[1,2]上恒成立.
故当 1≤x≤2时,-2-x的最大值为-2-1=-3,2-x的最小值为0,
故a的取值范围为[-3,0].
点评:本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,
属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•黑龙江)已知ω>0,函数f(x)=sin(ωx+
π
4
)
(
π
2
,π)
上单调递减.则ω的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黑龙江)已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黑龙江)复数z=
-3+i
2+i
的共轭复数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黑龙江)已知向量
a
b
夹角为45°,且|
a
|=1,|2
a
-
b
|=
10
,则|
b
|
=
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黑龙江)已知集合A={x|x2-x-2<0},B={x|-1<x<1},则(  )

查看答案和解析>>

同步练习册答案