精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,向量 =(a+b,sinA﹣sinC),且 =(c,sinA﹣sinB),且
(1)求角B的大小;
(2)若a+c=8,求AC边上中线长的最小值.

【答案】
(1)解:∵向量 =(a+b,sinA﹣sinC),且 =(c,sinA﹣sinB),且

∴c(sinA﹣sinC)﹣(a+b)(sinA﹣sinB)=0,

由正弦定理可得:c(a﹣c)﹣(a+b)(a﹣b)=0,化为a2+c2﹣b2=ac,

∴cosB= =

∵B∈(0,π),

∴B=


(2)解:设AC边上的中点为E,由余弦定理得:(2BE)2=c2+a2﹣2cacos120°=(a+c)2﹣ac=64﹣ac≥64﹣ =48,当a=c时取到”=”.

∴AC边上中线长的最小值为2


【解析】(1)由 ,可得c(sinA﹣sinC)﹣(a+b)(sinA﹣sinB)=0,再利用正弦定理余弦定理即可得出.(2)设AC边上的中点为E,由余弦定理得:(2BE)2=c2+a2﹣2cacos120°=(a+c)2﹣ac=64﹣ac,再利用基本不等式的性质即可得出.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】原命题:“为两个实数,若,则中至少有一个不小于1,下列说法错误的是

A.逆命题为:若中至少有一个不小于1,为假命题

B.否命题为:若都小于1 ,为假命题

C.逆否命题为:若都小于1 ,为真命题

D.”是“中至少有一个不小于1”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二手车经销商小王对其所经营的型号二手汽车的使用年数与销售价格(单位:万元/辆)进行整理,得到如下数据:

使用年数

2

3

4

5

6

7

售价

20

12

8

6.4

4.4

3

3.00

2.48

2.08

1.86

1.48

1.10

下面是关于的散点图:

(I)由散点图看出,可以用线性回归模型拟合的关系,请用相关系数加以说明;

(II)求关于的回归方程,并预测某辆型号二手汽车当使用年数为9年时,售价大约为多少?(的值精确到

(III)基于成本的考虑,该型号二手汽车的售价不得低于7118元,请根据(II)求出的回归方程预测在收购该型号二手汽车时,车辆的使用年数不得超过多少年?

参考公式:,相关系数

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新生儿Apgar评分,即阿氏评分是对新生儿出生后总体状况的一个评估,主要从呼吸、心率、反射、肤色、肌张力这几个方面评分,满10分者为正常新生儿,评分7分以下的新生儿考虑患有轻度窒息,评分在4分以下考虑患有重度窒息,大部分新生儿的评分多在7-10分之间,某市级医院妇产科对1月份出生的新生儿随机抽取了16名,以下表格记录了他们的评分情况.

(1)现从16名新生儿中随机抽取3名,求至多有1名评分不低于9分的概率;

(2)以这16名新生儿数据来估计本年度的总体数据,若从本市本年度新生儿任选3名,记表示抽到评分不低于9分的新生儿数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上的椭圆过点,离心率为 是椭圆的长轴的两个端点(位于右侧),是椭圆在轴正半轴上的顶点.

(1)求椭圆的标准方程;

(2)是否存在经过点且斜率为的直线与椭圆交于不同两点,使得向量共线?如果存在,求出直线方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设fn(x)=(3n﹣1)x2﹣x(n∈N*),An={x|fn(x)<0}
(1)定义An={x|x1<x<x2}的长度为x2﹣x1 , 求An的长度;
(2)把An的长度记作数列{an},令bn=anan+1
1°求数列{bn}的前n项和Sn
2°是否存在正整数m,n(1<m<n),使得S1 , Sm , Sn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.
(1)证明:B﹣A=
(2)求sinA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求{an}、{bn}的通项公式;
(2)求数列 的前n项和Sn

查看答案和解析>>

同步练习册答案