精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=
7
,PA=
3
,∠ABC=120°,G为线段PC的中点.
(1)证明:PA平面BGD;
(2)求直线DG与平面PAC所成的角的正切值.
(1)证明:设点O为AC、BD的交点,由AB=BC,AD=CD,得BD是线段AC的中垂线,所以O为AC的中点,
连结OG,
因为G为PC的中点,所以OGPA,
又因为PA?平面BGD,OG?平面BGD,
所以PA面BGD;
(2)因为PA⊥平面ABCD,BD?平面ABCD,
∴BD⊥PA,
又由(1)知BD⊥AC,PA∩AC=A,
所以BD⊥平面PAC,
所以DG与面PAC所成的角是∠DGO.
由(1)知:OG=
1
2
PA=
3
2
,在△ABC中,AC=
AB2+BC2-2AB•BC•cos∠ABC
=2
3

所以OC=
1
2
AC=
3

在直角△OCD中,OD=
CD2-OC2
=2

在直角△OGD中,tan∠DGO=
OD
OG
=
4
3
3

所以直线DG与面PAC所成的角的正切值是
4
3
3

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图在长方体ABCD-A1B1C1D1中,AB=a,AD=b,AC1=c,点M为AB的中点,点N为BC的中点.
(1)求长方体ABCD-A1B1C1D1的体积;
(2)若a=4,b=2,c=
21
,求异面直线A1M与B1N所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.
(Ⅰ)求证:AC⊥BC1
(Ⅱ)求证:AC1平面CDB1
(Ⅲ)若BB1=4,求CB1与平面AA1B1B所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S-ABCD中,底面ABCD是边长为4的正方形,O是AC与BD的交点,SO⊥平面ABCD,E是侧棱SC的中点,异面直线SA和BC所成角的大小是60°.
(Ⅰ)求证:直线SA平面BDE;
(Ⅱ)求直线BD与平面SBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD为一直角梯形,侧面PAD是等边三角形,其中BA⊥AD,CD⊥AD,CD=2AD=2AB,平面PAD⊥底面ABCD,E是PC的中点.
(1)求证:BE平面PAD;
(2)求证:BE⊥CD;
(3)求BD与平面PDC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD=AD=2.
(1)求PC与平面PBD所成的角;
(2)在线段PB上是否存在一点E,使得PC⊥平面ADE?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


四棱锥S-ABCD的底面ABCD是正方形,侧棱SC的中点E在底面内的射影恰好是正方形ABCD的中心O,顶点A在截面SBD内的射影恰好是△SBD的重心G.
(1)求直线SO与底面ABCD所成角的正切值;
(2)设AB=a,求此四棱锥过点C,D,G的截面面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体ABCD-A1B1C1D1中二面角A1-BD-C1的余弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知ABCD是矩形,PA⊥平面ABCD,M,N分别是AB,PC的中点,PA=2,PD=AB,且平面MND⊥平面PCD.
(1)求证:MN⊥AB;
(2)求二面角P-CD-A的大小;
(3)求三棱锥D-AMN的体积.

查看答案和解析>>

同步练习册答案