精英家教网 > 高中数学 > 题目详情

【题目】在数列{an}和{bn}中,a1= ,{an}的前n项为Sn , 满足Sn+1+( n+1=Sn+( n(n∈N*),bn=(2n+1)an , {bn}的前n项和为Tn
(1)求数列{bn}的通项公式bn以及Tn
(2)若T1+T3 , mT2 , 3(T2+T3)成等差数列,求实数m的值.

【答案】
(1)解:∵Sn+1+( n+1=Sn+( n(n∈N*),∴an+1=Sn+1﹣Sn= =

∴n≥2时,an= ,又a1= ,因此n=1时也成立.

∴an=

∴bn=(2n+1)an=(2n+1)×

∴Tn= + + +…+

= +…+ +

= = +2×

∴Tn=5﹣


(2)解:由(1)可得:T1= ,T2= ,T3=

∵T1+T3,mT2,3(T2+T3)成等差数列,∴ + +3×( + )=2×

解得m=


【解析】(1)由Sn+1+( n+1=Sn+( n(n∈N*),可得an+1=Sn+1﹣Sn= .可得an= ,bn=(2n+1)an=(2n+1)× .利用“错位相减法”与等比数列的求和公式即可得出.(2)由(1)可得:T1= ,T2= ,T3= .利用T1+T3 , mT2 , 3(T2+T3)成等差数列,即可得出.
【考点精析】本题主要考查了数列的前n项和和等差数列的性质的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系;在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2wx﹣sin2(wx﹣ )(x∈R,w为常数且 <w<1),函数f(x)的图象关于直线x=π对称.
(I)求函数f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若a=1,f( A)= .求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个顶点的坐标为A(0,1),B(1,0),C(0,﹣2),O为坐标原点,动点M满足| |=1,则| + + |的最大值是(
A.
B.
C. ﹣1
D. ﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(2cosx,sinx), =(cosx,2 cosx),函数f(x)= ﹣1.
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)在锐角△ABC中,内角A、B、C的对边分别为a,b,c,tanB= ,对任意满足条件的A,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,输出S的值为(
A.﹣
B.﹣
C.﹣
D.﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线l的参数方程为 (t为参数,0<φ<π),曲线C的极坐标方程为ρcos2θ=8sinθ.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A、B两点,当φ变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O:x2+y2=1过椭圆C: (a>b>0)的短轴端点,P,Q分别是圆O与椭圆C上任意两点,且线段PQ长度的最大值为3. (Ⅰ)求椭圆C的方程;
(Ⅱ)过点(0,t)作圆O的一条切线交椭圆C于M,N两点,求△OMN的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=2|x|﹣4的图象与曲线C:x2+λy2=4恰有两个不同的公共点,则实数λ的取值范围是(
A.[﹣
B.[﹣ ]
C.(﹣∞,﹣ ]∪(0,
D.(﹣∞,﹣ ]∪[ ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x,y∈R,向量 分别为直角坐标平面内x,y轴正方向上的单位向量,若向量 ,且
(Ⅰ)求点M(x,y)的轨迹C的方程;
(Ⅱ)设椭圆 ,P为曲线C上一点,过点P作曲线C的切线y=kx+m交椭圆E于A、B两点,试证:△OAB的面积为定值.

查看答案和解析>>

同步练习册答案