精英家教网 > 高中数学 > 题目详情
如图,A,B分别是射线OM,ON上的两点,给出下列向量:①
OA
+2
OB
;②
1
2
OA
+
1
3
OB
;③
3
4
OA
+
1
3
OB
;④
3
4
OA
+
1
5
OB
;⑤
3
4
OA
-
1
5
OB
,若这些向量均以O为起点,则终点落在阴影区域内(包括边界)的有(  )
A、①②B、②④C、①③D、③⑤
考点:向量加减混合运算及其几何意义
专题:平面向量及应用
分析:根据题意,判断向量的线性运算结果,对题目中的结论逐一验证即可.
解答: 解:∵过A作ON的平行线AC,并且使得AC=2OB,
根据向量加法的三角形法则,得到和向量
OC
的终点不在阴影OAB里,如图1所示,
∴①不满足条件;
∵取OA的中点D,过D作DE平行于ON,使得DE=
1
3
OB,
∵过D且与ON平行的线交AB于F,DF=
1
2
OB
∴DE<DF,
∴F在阴影AOB里,如图2所示,
∴②满足条件;
在OA上取点H,使得AH=
3
4
OA,
过H作OB的平行线交AB于I,
则HI=
1
4
OB<
1
3
OB,
3
4
OA
+
1
3
OB
对应的终点J在阴影OAB外,如图3所示,
∴③不满足条件,
同理,
3
4
OA
+
1
5
OB
对应的终点在阴影OAB内,④满足条件;
3
4
OA
-
1
5
OB
对应的终点Z不在阴影OAB内,如图5所示,
∴⑤不满足条件;
综上,满足条件的是②④.
故选:B.
点评:本题考查了平面向量的加法与减法的几何意义的应用问题,解题时应画出图形,结合图形进行解答,是基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验,借鉴其原理,我们也可以采用计算机随机数模拟实验的方法来估计π的值:先由计算机产生1200对0~1之间的均匀随机数x,y;再统计两个数能与1构成钝角三角形三边的数对(x,y)的个数m;最后再根据统计数m来估计π的值,假如统计结果是m=940,那么可以估计π≈
 
(精确到0.001)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|log2x|+1(a≠0),定义函数F(x)=
f(x),x>0
f(-x),x<0
,给出下列命题:
①F(x)=|f(x)|;
②函数F(x)是偶函数;
③当a<0时,若0<m<n<1,则有F(m)-F(n)<0成立;
④当a>0时,函数y=F(x)-2有4个零点.
其中正确命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,已知2A=B+C,且a2=bc,则△ABC的形状是(  )
A、两直角边不等的直角三角形
B、顶角不等于90°,或60°的等腰三角形
C、等边三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是(  )
A、i≥7?B、i>15?
C、i≥15?D、i>31?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(|x-1|+|x+2|-a).
(1)当a=7时,求函数f(x)的定义域;
(2)若关于x的不等式f(x)≥3的解集是R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x||x|<1},B={x|x2-2x<0},则A∩B=(  )
A、(-1,2)
B、(0,1)
C、(0,2)
D、(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4x-2x,实数s,t满足f(s)+f(t)=0,设a=2s+2t,b=2s+t
(1)当函数f(x)的定义域为[-1,1]时,求f(x)的值域;
(2)求函数关系式b=g(a),并求函数g(a)的定义域;
(3)求8s+8t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明|z1+z2|2+|z1-z2|2=2(|z1|2+|z2|2),并说明其几何意义.

查看答案和解析>>

同步练习册答案