精英家教网 > 高中数学 > 题目详情

【题目】如图,在下列三个正方体中,均为所在棱的中点,过作正方体的截面.在各正方体中,直线与平面的位置关系描述正确的是

A. 平面的有且只有①;平面的有且只有②③

B. 平面的有且只有②;平面的有且只有①

C. .平面的有且只有①;平面的有且只有②

D. 平面的有且只有②;平面的有且只有③

【答案】A

【解析】

①连结,根据面面平行的判定定理可证平面平面,进而可得平面

②③都可以根据线面垂直的判定定理,用向量的方法分别证明,即可证明平面;从而可得出结果.

①连结,因为均为所在棱的中点,所以,从而可得平面平面;根据,可得平面平面;所以平面

②设正方体棱长为,因为均为所在棱的中点,

所以,即

,即

,所以平面

③设正方体棱长为,因为均为所在棱的中点,

所以,即

,即

,所以平面

故选A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数,其中常数.

(1)求的最小值;

(2)若,讨论的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点为正四棱锥的底面中心,四边形为矩形,且

1)求正四棱锥的体积;

2)设为侧棱上的点,且,求直线和平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点务极点,轴正半轴为极轴建立极坐标系,曲线

(1)求曲线的直角坐标方程;

(2)曲线的交点为,求以为直径的圆与轴的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据统计调查数据显示:某企业某种产品的质量指标值服从正态分布,从该企业生产的这种产品(数量很大)中抽取100件,测量这100件产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间内的频率之比为.

1)求这100件产品质量指标值落在区间内的频率;

2)根据频率分布直方图求平均数(同一组中的数据用该组区间的中点值作代表);

3)若取这100件产品指标的平均值,从这种产品(数量很大)中任取3个,求至少有1落在区间的概率.

参考数据:,若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形中,.现沿对角线折起,使点到达点.点分别在上,且四点共面.

(1)求证:

(2)若平面平面,平面与平面夹角为,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数aR

(Ⅰ)当a=1时,求曲线y=fx)在点(0f0))处的切线方程;

(Ⅱ)求fx)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体中,四边形为菱形,且的中点.

(1)求证:平面

(2)若平面平面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,对于点,定义变换:将点变换为点,使得其中.这样变换就将坐标系内的曲线变换为坐标系内的曲线.则四个函数,,,在坐标系内的图象,变换为坐标系内的四条曲线(如图)依次是

A. ②,③,①,④B. ③,②,④,①C. ②,③,④,①D. ③,②,①,④

查看答案和解析>>

同步练习册答案