精英家教网 > 高中数学 > 题目详情
设函数(a,b为常数),且方程有两个实根为x1=-1,x2=2,
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心.
【答案】分析:(1)把方程的2个实数根分别代入方程得到方程组,解此方程组求出待定系数,进而得到函数的解析式.
(2)利用2个奇函数的和仍是奇函数,再利用图象平移找出所求函数的对称中心.
解答:解:(1)由
解得
(2)证明:已知函数y1=x,都是奇函数,
所以函数也是奇函数,其图象是以原点为中心的中心对称图形,

可知,函数g(x)的图象沿x轴方向向右平移1个单位,
再沿y轴方向向上平移1个单位,即得到函数f(x)的图象,
故函数f(x)的图象是以点(1,1)为中心的中心对称图形.
点评:本题考查用待定系数法求函数解析式,函数图象的平移.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年安徽省黄山市屯溪一中高三(上)10月月考数学试卷(理科)(解析版) 题型:解答题

设函数(a,b为常数),且方程有两个实根为x1=-1,x2=2,
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省郑州市新密二高高三(上)第一次月考数学试卷(解析版) 题型:解答题

设函数(a,b为常数),且方程有两个实根为x1=-1,x2=2,
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省益阳市南县一中高三(上)8月月考数学试卷(理科)(解析版) 题型:解答题

设函数(a,b为常数),且方程有两个实根为x1=-1,x2=2,
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心.

查看答案和解析>>

科目:高中数学 来源:2012年云南省曲靖市宣威市高三第一次调研摸底数学试卷(理科)(解析版) 题型:解答题

设函数(a,b为常数),且方程有两个实根为x1=-1,x2=2,
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心.

查看答案和解析>>

同步练习册答案