精英家教网 > 高中数学 > 题目详情
17.观察式子:$1+\frac{1}{{2}^{2}}<\frac{3}{2}$,$1+\frac{1}{2^2}+\frac{1}{3^2}<\frac{5}{3}$,$1+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}<\frac{7}{4}$,…,则可归纳出第n个式子为1+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{2n-1}{n}$.

分析 根据规律,左边是正整数n的平方的倒数和,右边是分子是正奇数,分母是正整数n,可以猜想结论

解答 解:根据规律,左边是正整数n的平方的倒数和,右边是分子是正奇数,分母是正整数n,
可以猜想的结论为:当n∈N且n≥2时,恒有1+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{2n-1}{n}$.
故答案为:1+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{2n-1}{n}$.

点评 本题考查的知识点是归纳推理其中分析已知中的式子,分析出两个式子之间的数据变化规律是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.写出适合下列条件的椭圆的标准方程
(1)焦点坐标分别为(0,-4),(0,4),a=5
(2)a+c=10,a-c=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆C过点(0,2)且与直线x+$\sqrt{3}$y-4=0切于点$(1,\sqrt{3})$.
(1)求圆C的方程;
(2)若P,Q为圆C与y轴的交点(P在Q上),过点T(0,4)的直线l交圆C于M,N两点,若M,N都不与P,Q重合时,是否存在定直线m,使得直线PN与QM的交点G恒在直线m上.若存在,求出直线m的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若正四棱柱底面边长为3,高为5,则侧面积为60.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对定义域分别为D1,D2的函数y=f(x),y=g(x),规定:函数h(x)=$\left\{\begin{array}{l}{f(x)•g(x),x∈{D}_{1}且x∈{D}_{2}}\\{f(x),x∈{D}_{1}且x∉{D}_{2}}\\{g(x),x∉{D}_{1}且x∈{D}_{2}}\end{array}\right.$.若f(x)=x-2(x≥1),g(x)=-2x+3(x≤2),则h(x)的解析式h(x)=$\left\{\begin{array}{l}{(x-2)(-2x+3),1≤x≤2}\\{x-2,x>2}\\{-2x+3,x<1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图边长为2的正方形内部有一块不规则的区域E,若向该图中随机撒100颗豆子,经清点落在E内的有30颗,试估计E的面积为:1.2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:函数f(x)=sinxcosx的单调递增区间[$kπ-\frac{π}{4}$,$kπ+\frac{π}{4}$](k∈Z);命题q:函数g(x)=sin(x+$\frac{π}{2}$) 的图象关于原点对称,则下列命题中为真命题的是(  )
A.p∧qB.p∨qC.-pD.(-p)∨q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(0)的值是-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若a∈R,则“a2>a”是“a>1”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

同步练习册答案