精英家教网 > 高中数学 > 题目详情

【题目】设为实数,函数, .

1)求的单调区间与极值;

2)求证:当时, .

【答案】(1)上减,上增;,取极小值2)见解析

【解析】试题分析:本题主要考查函数的单调区间及极值的求法和不等式的证明,具体涉及到导数的性质、函数增减区间的判断、极值的计算和不等式性质的应用,解题时要认真审题,仔细解答.第一问,由,知.令,得.列表讨论能求出的单调区间区间及极值;第二问,设,于是.由第一问知当时, 最小值为,于是对任意,都有,所以R内单调递增.由此能够证明

试题解析:

,得

于是当x变化时, 的变化情况如下表:

的单调递减区间是

单调递增区间是

处取得极小值,

极小值为,无极大值.

2)证明:设

于是

由(1)知当时,

最小值为

于是对任意,都有,所以R内单调递增.

于是当时,对任意,都有

,从而对任意

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在中, 边上的高,沿折起,使

(Ⅰ)证明:平面平面

(Ⅱ)的中点,求与底面所成角的正切值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有正整数构成的数表如下:

第一行:1

第二行:1 2

第三行:1 1 2 3

第四行:1 1 2 1 1 2 3 4

第五行:1 1 2 1 1 2 3 1 1 2 1 1 2 3 4 5

…… …… ……

行:先抄写第1行,接着按原序抄写第2行,然后按原序抄写第3行,...,直至按原序抄写第行,最后添上数.(如第四行,先抄写第一行的数1,接着按原序抄写第二行的数1,2,接着按原序抄写第三行的数1,1,2,3,最后添上数4).

将按照上述方式写下的第个数记作(如

(1)用表示数表第行的数的个数,求数列的前项和

(2)第8行中的数是否超过73个?若是,用表示第8行中的第73个数,试求的值;若不是,请说明理由;

(3)令,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线方程为

(Ⅰ)求函数的单调区间;

(Ⅱ)若为整数,当时, 恒成立,求的最大值(其中的导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是等差数列的前项和,已知 .

1)求

2若数列求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(Ⅰ)若函数处的切线平行于直线,求实数的值;

(Ⅱ)讨论上的单调性;

(Ⅲ)若存在,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆 上的一点,椭圆的右焦点为,斜率为的直线交椭圆两点,且三点互不重合.

(1)求椭圆的方程;

(2)求证:直线 的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a|x+b|(a>0,a≠1,b∈R).
(1)若f(x)为偶函数,求b的值;
(2)若f(x)在区间[2,+∞)上是增函数,试求a、b应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在直线上,且与直线相切于点

1)求圆方程;

2)是否存在过点的直线与圆交于两点,且的面积是为坐标原点),若存在,求出直线的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案