【题目】设为实数,函数, .
(1)求的单调区间与极值;
(2)求证:当且时, .
【答案】(1)在上减,在上增;当时,取极小值(2)见解析
【解析】试题分析:本题主要考查函数的单调区间及极值的求法和不等式的证明,具体涉及到导数的性质、函数增减区间的判断、极值的计算和不等式性质的应用,解题时要认真审题,仔细解答.第一问,由, ,知, .令,得.列表讨论能求出的单调区间区间及极值;第二问,设, ,于是, .由第一问知当时, 最小值为,于是对任意,都有,所以在R内单调递增.由此能够证明.
试题解析:∵, ,
∴, .
令,得.
于是当x变化时, , 的变化情况如下表:
故的单调递减区间是,
单调递增区间是,
在处取得极小值,
极小值为,无极大值.
(2)证明:设, ,
于是, .
由(1)知当时,
最小值为.
于是对任意,都有,所以在R内单调递增.
于是当时,对任意,都有.
而,从而对任意, .
即,
故.
科目:高中数学 来源: 题型:
【题目】现有正整数构成的数表如下:
第一行:1
第二行:1 2
第三行:1 1 2 3
第四行:1 1 2 1 1 2 3 4
第五行:1 1 2 1 1 2 3 1 1 2 1 1 2 3 4 5
…… …… ……
第行:先抄写第1行,接着按原序抄写第2行,然后按原序抄写第3行,...,直至按原序抄写第行,最后添上数.(如第四行,先抄写第一行的数1,接着按原序抄写第二行的数1,2,接着按原序抄写第三行的数1,1,2,3,最后添上数4).
将按照上述方式写下的第个数记作(如)
(1)用表示数表第行的数的个数,求数列的前项和;
(2)第8行中的数是否超过73个?若是,用表示第8行中的第73个数,试求和的值;若不是,请说明理由;
(3)令,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是椭圆: 上的一点,椭圆的右焦点为,斜率为的直线交椭圆于、两点,且、、三点互不重合.
(1)求椭圆的方程;
(2)求证:直线, 的斜率之和为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=a|x+b|(a>0,a≠1,b∈R).
(1)若f(x)为偶函数,求b的值;
(2)若f(x)在区间[2,+∞)上是增函数,试求a、b应满足的条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆的圆心在直线上,且与直线相切于点,
(1)求圆方程;
(2)是否存在过点的直线与圆交于两点,且的面积是(为坐标原点),若存在,求出直线的方程,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com