精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x+a|+|x+ |(a>0)(a<0)
(1)当a=2时,求不等式f(x)>3的解集
(2)证明:

【答案】
(1)解:当a=2时,f(x)=|x+2|+|x+ |,原不等式等价于

解得:x<﹣ 或x∈ ,所以不等式的解集为{x|x<﹣


(2)解:f(m)+f(﹣ )=|m+a|+|m+ |+|﹣ +a|+|﹣ + |

=


【解析】(1)分类讨论,解不等式,即可得出结论;(2)f(m)+f(﹣ )=|m+a|+|m+ |+|﹣ +a|+|﹣ + |,利用三角不等式,及基本不等式即可证明结论.
【考点精析】解答此题的关键在于理解绝对值不等式的解法的相关知识,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号,以及对不等式的证明的理解,了解不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设双曲线 (a>0,b>0)的左焦点为F1 , 左顶点为A,过F1作x轴的垂线交双曲线于P、Q两点,过P作PM垂直QA于M,过Q作QN垂直PA于N,设PM与QN的交点为B,若B到直线PQ的距离大于a+ ,则该双曲线的离心率取值范围是(
A.(1﹣
B.( ,+∞)
C.(1,2
D.(2 ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCD-A1B1C1D1,M,N分别为棱C1D1,C1C的中点,有以下四个结论:

直线AMCC1是相交直线;直线AMBN是平行直线;

直线BNMB1是异面直线; 直线MNAC所成的角为60°.

其中正确的结论为___  (:把你认为正确的结论序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中, 底面 ,底面 为直角梯形, 的中点,平面 点.、

(1)求证:
(2)求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1的圆心在坐标原点O,且恰好与直线相切.

()求圆C1的标准方程;

()设点A为圆上一动点,AN垂直于x轴于点N,若动点Q满足

(其中m为非零常数),试求动点Q的轨迹方程;

()()的结论下,当m时,得到动点Q的轨迹为曲线C,与l1垂直的直线l与曲线C交于BD两点,求OBD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ( 为实常数).
(1)若 ,求 的单调区间;
(2)若 ,且 ,求函数 上的最小值及相应的 值;
(3)设 ,若存在 ,使得 成立,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机调查询问110名性别不同的高中生是否爱好某项运动,得到如下的列联表:

总计

爱好

40

20

60

不爱好

20

30

50

总计

60

50

110

计算得
附表:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

参照附表,得到的正确结论是( )
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
C.有99%以上的把握认为“爱好该项运动与性别无关”
D.有99%以上的把握认为“爱好该项运动与性别有关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)当 时,求 的单调区间;
(2)设 是曲线 图象上的两个相异的点,若直线 的斜率 恒成立,求实数 的取值范围;
(3)设函数 有两个极值点 ,且 ,若 恒成立,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠ABC=∠BAD=90°,F分别为ABPC的中点.

(I)若四棱锥P-ABCD的体积为4,求PA的长;

(II)求证:PEBC

(III)求PC与平面PAD所成角的正切值.

查看答案和解析>>

同步练习册答案