精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在平面直角坐标系中,平行于轴且过点的入射光线被直线反射,反射光线轴于点,圆过点,且与相切.

(Ⅰ)求所在直线的方程;

(Ⅱ)求圆的方程.

【答案】(Ⅰ)(Ⅱ)

【解析】

(Ⅰ)设交于点D, 求得D点的坐标,进而利用直线的倾斜角求得直线的斜率,再利用直线的点斜式方程,即可求解.

(Ⅱ)设圆心,根据圆心在过点且与垂直的直线上,且点在点的下方,求得,再由圆心C在过点A且与垂直的直线上,求得的值,进而求得圆的方程.

(Ⅰ)如图,直线,设交于点D,则D(,2).

的倾斜角为30° 的倾斜角为60°,即

所以反射光线所在直线方程为

.

(Ⅱ)设圆心,由题意可知:圆心在过点且与垂直的直线上,且点在点的下方,则

又圆心C在过点A且与垂直的直线上,

故圆C的半径,所以圆C的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有3个红球和7个白球,这些球除颜色外完全相同,一次从中摸出3个球.

(1)设表示摸出的红球的个数,求的分布列和数学期望;

(2)为了提高同学们参与游戏的积极性,参加游戏的同学每人可摸球两次,每次摸球后放回,若规定两次共摸出红球的个数不少于,且中奖概率大于60%时,即中奖,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,真命题是( )

A. ,则为实数的充要条件是为共轭复数;

B. “直线与曲线C相切”是“直线与曲线C只有一个公共点”的充分不必要条件;

C. “若两直线,则它们的斜率之积等于”的逆命题;

D. 是R上的可导函数,“若的极值点,则”的否命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,⊥平面,底面为梯形,的中点

Ⅰ)证明:∥平面

(Ⅱ)求直线与平面所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校选派甲、乙、丙、丁、戊5名学生代表学校参加市级“演讲”和“诗词”比赛下面是他们的一段对话甲说:“乙参加‘演讲’比赛”;乙说:“丙参加‘诗词’比赛”;丙说“丁参加‘演讲’比赛”丁说:“戊参加‘诗词’比赛”戊说:“丁参加‘诗词’比赛”

已知这5个人中有2人参加演讲比赛3人参加诗词比赛,其中有2人说的不正确且参加“演讲”的2人中只有1人说的不正确.根据以上信息,可以确定参加“演讲”比赛的学生是

A. 甲和乙 B. 乙和丙 C. 丁和戊 D. 甲和丁

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是 (  )

A. “若,则,或”的否定是“若,或

B. a,b是两个命题,如果a是b的充分条件,那么的必要条件.

C. 命题“,使 得”的否定是:“,均有

D. 命题“ 若,则”的否命题为真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】德国数学家科拉茨1937年提出一个著名的猜想:任给一个正整数,如果是偶数,就将它减半(即);如果是奇数,则将它乘3加1(即),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定.现在请你研究:如果对正整数(首项)按照上述规则进行变换后的第9项为1(注:1可以多次出现),则的所有不同值的个数为( )

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】青少年“心理健康”问题越来越引起社会关注,某校对高一600名学生进行了一次“心理健康”知识测试,并从中抽取了部分学生的成绩(得分取正整数,满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图。

分组

频数

频率

[50,60)

2

0.04

[60,70)

8

0.16

[70,80)

10

[80,90)

[90,100]

14

0.28

合计

1.00

                                                             

(1)填写答题卡频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;

(2)请你估算学生成绩的平均数及中位数。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 ,点,以线段为直径的圆内切于圆,记点的轨迹为

(1)求曲线的方程;

(2)直线交圆两点,当的中点时,求直线的方程.

查看答案和解析>>

同步练习册答案