【题目】已知椭圆的右焦点为,点在椭圆上.
(1)求椭圆的方程;
(2)点在圆上,且在第一象限,过作的切线交椭圆于两点,问:的周长是否为定值?若是,求出定值;若不是。说明理由.
科目:高中数学 来源: 题型:
【题目】已知圆:.
(1)直线过点,且与圆交于两点,若,求直线的方程;
(2)过圆上一动点作平行于轴的直线,设与轴的交点为,若向量,求动点的轨迹方程,并说明此轨迹是什么曲线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的离心率,长轴长为4.
(1)求椭圆的方程;
(2)设动直线与椭圆有且只有一个公共点,过右焦点作直线与直线交与点,且.求证:点在定直线上,并求出定直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列的前项和为,并且,数列满足:,记数列的前项和为.
(1)求数列的通项公式及前项和为;
(2)求数列的通项公式及前项和为;
(3)记集合,若的子集个数为16,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】销售甲、乙两种商品所得利润分别是万元,它们与投入资金万元的关系分别为(其中m,a,b都为常数),函数对应的曲线如图所示.
(1)求函数与的解析式;
(2)若该商场一共投资10万元经销甲、乙两种商品,求该商场所获利润的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com