精英家教网 > 高中数学 > 题目详情
如图,F是椭圆的一个焦点,A、B是椭圆的两个顶点,椭圆的离心率为,点C在x轴上,BC⊥BF,由B、C、F三点确定的圆M恰好与直线相切.
(I)求椭圆的方程;
(II)过F作一条与两坐标轴都不垂直的直线l交椭圆于P、Q两点,若在x轴上存在一点N(x,0),使得直线NP与直线NQ关于x轴对称,求x的值.

【答案】分析:(I)设点F的坐标为(-c,0),根据离心率,可知点B的坐标为(0,c),进而可求直线BF的斜率,根据BC⊥BF,进而求得直线BC的斜率.进而求得点C的坐标,可知圆M的圆心和半径,又根据圆M恰好与直线相切.根据圆心到直线的距离为2c,进而可求得c,根据离心率可求得b,根据b2=a2-c2求得a,最后椭圆的标准方程可得.
(II)由题意可设直线l的方程为y=k(x+1)(k≠0),设P(x1,y1),Q(x2,y2)根据直线NP与直线NQ关于x轴对称,可知kNP=-kNQ,根据点P,Q表示x,根据直线l与椭圆相交,联立方程,根据韦达定理,可分别求得x1+x2和x1x2,进而可求得x
解答:解:(I)由题意可知F(-c,0)
,∴b=c,即B(0,,∴
又∵BC⊥BF,∴
∴C(3c,0),∴圆M的圆心坐标为(c,0),半径为2c由直线x+y+3=0与圆M相切可得=2c,
∴c=1,∴椭圆的方程为

(II)由题意可设直线l的方程为y=k(x+1)(k≠0),设P(x1,y1),Q(x2,y2
∵直线NP与直线NQ关于x轴对称,
∴kNP=-kNQ,即
,∴
,∴3x2+4k2(x+1)2=12
∴(3+4k2)x2+8k2x+4k2-12=0,


点评:本题主要考查椭圆的标准方程的问题.要能较好的解决椭圆问题,必须熟练把握好椭圆方程中的离心率、长轴、短轴、标准线等性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本大题共15分) 如图,F是椭圆的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为,点C在x轴上,

,B、C、F三点确定的圆M恰好与

直线相切.(1)求椭圆的方程;

(2)过点A的直线与圆M交于P、Q两点,

,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年山西大学附中高二(下)第一次月考数学试卷(理科)(解析版) 题型:解答题

如图,F是椭圆的一个焦点,A、B是椭圆的两个顶点,椭圆的离心率为,点C在x轴上,BC⊥BF,由B、C、F三点确定的圆M恰好与直线相切.
(I)求椭圆的方程;
(II)过F作一条与两坐标轴都不垂直的直线l交椭圆于P、Q两点,若在x轴上存在一点N(x,0),使得直线NP与直线NQ关于x轴对称,求x的值.

查看答案和解析>>

科目:高中数学 来源:2009年辽宁省丹东市高考数学二模试卷(文科)(解析版) 题型:解答题

如图,F是椭圆的一个焦点,A、B是椭圆的两个顶点,椭圆的离心率为,点C在x轴上,BC⊥BF,由B、C、F三点确定的圆M恰好与直线相切.
(I)求椭圆的方程;
(II)过F作一条与两坐标轴都不垂直的直线l交椭圆于P、Q两点,若在x轴上存在一点N(x,0),使得直线NP与直线NQ关于x轴对称,求x的值.

查看答案和解析>>

科目:高中数学 来源:浙江省杭州十四中2010届高三11月月考(理) 题型:解答题

 如图,F是椭圆的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为,点C在x轴上,,B、C、F三点确定的圆M恰好与直线相切.

(1)求椭圆的方程;

(2)过点A的直线与圆M交于P、Q两点,且,求直线的方程.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案