精英家教网 > 高中数学 > 题目详情
3.在△ABC中,$A=\frac{π}{3}$,$BC=\sqrt{3}$,AC=1,那么AB等于(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 利用余弦定理列出关系式,将AC,BC,以及cosA的值代入即可求出AB的长.

解答 解:∵在△ABC中,A=$\frac{π}{3}$,AC=b=1,BC=a=$\sqrt{3}$,
∴由余弦定理得:a2=b2+c2-2bccosA,即3=1+c2-c,
解得:c=2,
则AB=c=2,
故选:D.

点评 此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.函数y=Asin(ωx+φ)(A>0,ω>0)为偶函数的充要条件是(  )
A.φ=$\frac{π}{2}$+2kπ(k∈Z)B.φ=$\frac{π}{2}$+kπ(k∈Z)C.$\frac{φ}{ω}$=$\frac{π}{2}$+2kπ(k∈Z)D.$\frac{φ}{ω}$=$\frac{π}{2}$+kπ(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x2-1|+x2+ax,(a<-1,x>-1).
(1)求函数f(x)的最小值;
(2)若函数f(x)有两个零点x1,x2,试判断f(x1x2)与a+1的大小关系,并证明;
(3)己知实数m,n(-1<m<n≤1),对任意t0∈(m,n),总存在两个不同的t1,t2∈(1,+∞)使得f(t0)-2=f(t1)=f(t2),求证:n-m≤$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1的离心率e=3,直线y=x+2与双曲线交于A,B两点,若OA⊥OB,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.将下列各根式写成分数指数幂的形式:
(1)$\root{5}{9}$;
(2)$\sqrt{\frac{3}{2}}$;
(3)$\frac{1}{\root{4}{{5}^{3}}}$;
(4)$\root{3}{{a}^{4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A、B、C对边分别为a、b、c,且2asinA=(2b+c)sinB+(2c+b)sinC.
(Ⅰ)求角A;
(Ⅱ)若a=2,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.正方体ABCD-A1B1C1D1中,B1D与BC1夹角的大小是90°;若E、F分别为AB、CC1的中点,则异面直线EF与A1C1夹角的大小是30°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+2,}&{x≤0}\\{-{x}^{2},}&{x>0}\end{array}\right.$,若f(f(a))=2,则a=(  )
A.-$\sqrt{2}$B.$\sqrt{2}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=lnx+x-4的零点在区间(k,k+1)内,则整数k的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案