精英家教网 > 高中数学 > 题目详情
18.给定映射f:(x,y)→(2x+y,x-2y),在映射f下,(3,-1)的原像为(  )
A.(-1,3)B.(5,5)C.(3,-1)D.(1,1)

分析 设在映射f下,(3,-1)的原像为:(x,y),则2x+y=3,x-2y=-1,解得答案.

解答 银:设在映射f下,(3,-1)的原像为:(x,y),
则2x+y=3,x-2y=-1,
解得:x=1,y=1,
故在映射f下,(3,-1)的原像为:(1,1)
故选:D

点评 本题考查的知识点是映射,由象求原象就是解方程(组).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.如图,该三视图表示的几何体是棱台.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知F1,F2为椭圆C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1的左、右焦点,点E是椭圆C上的动点,$\overrightarrow{EF}$1•$\overrightarrow{EF}$2的最大值、最小值分别为(  )
A.9,7B.8,7C.9,8D.17,8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数f(x)=x3-($\frac{1}{2}$)x的零点在区间(n-1,n)内,则整数n=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知O是坐标原点,椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别为F1,F2,离心率$e=\frac{{\sqrt{2}}}{2}$,且过点$P(1,\frac{{\sqrt{2}}}{2})$.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若⊙O是以F1F2为直径的圆,一直线l:y=kx+m与⊙O相切,并与椭圆交于不同的两点A、B,当$\frac{2}{3}≤\overrightarrow{OA}•\overrightarrow{OB}≤\frac{3}{4}$时,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.一个几何体的三视图如图所示,则这个几何体的表面积等于10+2$\sqrt{3}$+4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$f(\sqrt{x}-1)=x-2\sqrt{x}$,且f(a)=8,则实数a的值是(  )
A.±3B.16C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如果直线l经过圆x2+y2-2x-4y=0的圆心,且直线l不通过第四象限,那么直线l的斜率的取值范围是(  )
A.[0,2]B.[0,1]C.[0,$\frac{1}{2}$]D.[0,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.用二分法求函数f(x)=x3-x2-2x+1在区间[0,1]上的一个根,要求精确到0.0001,则至少要二分有根区间多少次?

查看答案和解析>>

同步练习册答案