精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=lnx,g(x)= x2﹣bx(b为常数).
(1)函数f(x)的图象在点(1,f(1))处的切线与函数g(x)的图象相切,求实数b的值;
(2)若函数h(x)=f(x)+g(x)在定义域上存在单调减区间,求实数b的取值范围;
(3)若b≥2,x1 , x2∈[1,2],且x1≠x2 , 都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|成立,求实数b的取值范围.

【答案】
(1)解:因为f(x)=lnx,所以 ,因此f'(1)=1,

所以函数f(x)的图象在点(1,f(1))处的切线方程为y=x﹣1,

得x2﹣2(b+1)x+2=0.

由△=4(b+1)2﹣8=0,得

(还可以通过导数来求b)


(2)解:因为h(x)=f(x)+g(x)= (x>0),

所以

由题意知h'(x)<0在(0,+∞)上有解,

因为x>0,设u(x)=x2﹣bx+1,因为u(0)=1>0,

则只要 ,解得b>2,

所以b的取值范围是(2,+∞)


(3)解:不妨设x1>x2

因为函数f(x)=lnx在区间[1,2]上是增函数,

所以f(x1)>f(x2),

函数g(x)图象的对称轴为x=b,且b>2.

当b≥2时,函数g(x)在区间[1,2]上是减函数,

所以g(x1)<g(x2),

所以|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|,

等价于f(x1)﹣f(x2)>g(x2)﹣g(x1),

即f(x1)+g(x1)>f(x2)+g(x2),

等价于h(x)=f(x)+g(x)= 在区间[1,2]上是增函数,

等价于 在区间[1,2]上恒成立,

等价于 在区间[1,2]上恒成立,所以b≤2,又b≥2,所以b=2


【解析】(1)求出函数的导数根据二次函数的性质求出b的值即可;(2)求出h(x)的导数,结合二次函数的性质得到关于b的不等式组,解出即可;(3)问题等价于f(x1)﹣f(x2)>g(x2)﹣g(x1),即h(x)=f(x)+g(x)= 在区间[1,2]上是增函数,根据函数的单调性求出b的范围即可.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知整数n≥4,集合M={1,2,3,…,n}的所有含有4个元素的子集记为A1 , A2 , A3 , …,
设A1 , A2 , A3 , …, 中所有元素之和为Sn
(1)求S4 , S5 , S6并求出Sn
(2)证明:S4+S5+…+Sn=10Cn+26

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是以O为中心的菱形,底面ABCDMBC上一点.

BM等于多少时,平面POM

在满足的条件下,若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】去年“十一”期间,昆曲高速公路车辆较多.某调查公司在曲靖收费站从7座以下小型汽车中按进收费站的先后顺序,每间隔50辆就抽取一辆的抽样方法抽取40辆汽车进行抽样调查,将他们在某段高速公路的车速()分成六段:后,得到如图的频率分布直方图.

(I)调查公司在抽样时用到的是哪种抽样方法?

(II)求这40辆小型汽车车速的众数和中位数的估计值;

(III)若从这40辆车速在的小型汽车中任意抽取2辆,求抽出的2辆车车速都在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意的x,y∈(0,+∞),不等式ex+y﹣4+ex﹣y+4+6≥4xlna恒成立,则正实数a的最大值是(
A.
B.
C.e
D.2e

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面的中点.

(1)求证:

(2)求证:

(3)求二面角E-AB-C的正切值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T,其范围为[0,10],分为五个级别,T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.早高峰时段(T≥3),从某市交通指挥中心随机选取了三环以内的50个交通路段,依据其交通指数数据绘制的频率分布直方图如右图. (Ⅰ)这50个路段为中度拥堵的有多少个?
(Ⅱ)据此估计,早高峰三环以内的三个路段至少有一个是严重拥堵的概率是多少?
(III)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟;中度拥堵为42分钟;严重拥堵为60分钟,求此人所用时间的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究小组欲研究昼夜温差大小与患感冒人数之间的关系,统计得到1至6月份每月9号的昼夜温差与因患感冒而就诊的人数的数据,如下表:

日期

19

2月9

3月9

4月9

59

6月9

10

11

13

12

8

6

22

25

29

26

16

12

该研究小组的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求回归方程,再用之前被选取的2组数据进行检验.

(1)若选取1月和6月的数据作为检验数据,请根据剩下的2至5月的数据,求出关于的线性回归方程;(计算结果保留最简分数)

(2)若用(1)中所求的回归方程作预报,得到的估计数据与所选出的检验数据的误差不超过2人,则认为得到的回归方程是理想的,试问该研究小组所得回归方程是否理想?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的图象的一条对称轴方程是 ,函数f'(x)的图象的一个对称中心是 ,则f(x)的最小正周期是(
A.
B.
C.π
D.2π

查看答案和解析>>

同步练习册答案