精英家教网 > 高中数学 > 题目详情

已知椭圆的离心率为,过顶点的直线与椭圆相交于两点.
(1)求椭圆的方程;
(2)若点在椭圆上且满足,求直线的斜率的值.

(1);(2).

解析试题分析:(1)设椭圆的方程,用待定系数法求出的值;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.
试题解析:(Ⅰ)因为e=,b=1,所以a=2,
故椭圆方程为. 4分
(Ⅱ)设l的方程为y=kx+1,A(x1,y1),B(x2,y2),M(m,n).
联立,解得  (1+4k2)x2+8kx="0,"                 7分
因为直线l与椭圆C相交于两点,所以△=(8k)2>0,所以x1+x2=,x1×x2=0,
        ∴
点M在椭圆上,则m2+4n2=4,∴,化简得   
x1x2+4y1y2= x1x2+4(kx1+1)(kx2+1)= (1+4k2)x1x2+4k(x1+x2)+4=0,       10分
∴4k·()+4=0,解得k=±.故直线l的斜率k=±.       12分
考点:(1)椭圆的标准方程;(2)直线与椭圆相交的综合问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆经过点,离心率为,过点的直线与椭圆交于不同的两点
(1)求椭圆的方程;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆(a>b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为
(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,分别是椭圆的左、右焦点,顶点的坐标为,连结并延长交椭圆于点A,过点A作轴的垂线交椭圆于另一点C,连结.
(1)若点C的坐标为,且,求椭圆的方程;
(2)若求椭圆离心率e的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为.
(1)若原点到直线的距离为,求椭圆的方程;
(2)设过椭圆的右焦点且倾斜角为的直线和椭圆交于A,B两点.
,求b的值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,矩形ABCD中,|AB|=4,|BC|=2,E,F,M,N分别是矩形四条边的中点,G,H分别是线段ON,CN的中点.
(1)证明:直线EG与FH的交点L在椭圆W:上;
(2)设直线l:与椭圆W:有两个不同的交点P,Q,直线l与矩形ABCD有两个不同的交点S,T,求的最大值及取得最大值时m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,曲线C1是以原点O为中心,F1,F2为焦点的椭圆的一部分.曲线C2是以O为顶点,F2为焦点的抛物线的一部分,A是曲线C1和C2的交点且∠AF2F1为钝角,若|AF1|=,|AF2|=

(1)求曲线C1和C2的方程;
(2)设点C是C2上一点,若|CF1|=|CF2|,求△CF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知直线过抛物线C:的焦点且与的对称轴垂直,与C交于A、B两点,为C的准线上一点,且,则过抛物线C的焦点的弦长的最小值是_______

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

以原点为顶点,以椭圆C:的左准为准线的抛物线交椭圆C的右准
线交于A、B两点,则|AB|=        

查看答案和解析>>

同步练习册答案