精英家教网 > 高中数学 > 题目详情
17.m、n∈R+,mn=2,问2m+4n是否有最值?如有,请求值.

分析 直接利用基本不等式求解最值即可.

解答 解:m、n∈R+,mn=2,
2m+4n=2m+22n≥2$\sqrt{{2}^{m}•{z}^{2n}}$=2$\sqrt{{2}^{m+2n}}$=2×${2}^{\frac{m+2n}{2}}$≥2×${2}^{\frac{2\sqrt{2mn}}{2}}$=2×22=8,当且仅当m=2n并且mn=2可得即m=2,n=1取等号.
函数的最小值为:8.

点评 本题考查基本不等式的应用,函数的最小值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=sin2(ωx)-$\frac{1}{2}$(ω>0)的周期为π,若将其图象沿x轴向右平移a个单位(a>0),所得图象关于原点对称,则实数a的最小值为(  )
A.πB.$\frac{3π}{4}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=${log_2}(x+4)-{2^x}$的零点的情况是(  )
A.仅有一个或0个零点B.有两个正零点
C.有一正零点和一负零点D.有两个负零点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.据说伟大的阿基米德死了以后,敌军将领马塞拉斯给他建了一块墓碑.在墓碑上刻了一个如图所示的图案,图案中球的直径与圆柱底面的直径和圆柱的高相等,圆锥的顶点在圆柱上底面的圆心,圆锥的底面是圆柱的下底面.试计算出图形中圆锥、球、圆柱的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点分别为F1、F2,过F1作倾斜角为30°的直线交双曲线的右支于点P,若∠PF1F2的平分线与∠F1PF2的平分线的交点为Q(1,1),则双曲线的渐近线方程为(  )
A.y=±$\sqrt{3+2\sqrt{3}}$xB.y=±$\sqrt{2\sqrt{3}-3}$xC.y=±($\sqrt{3}$+1)xD.y=±($\sqrt{3}$-1)x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,圆E:(x+2)2+y2=4,点F(2,0),动圆P过点F,且与圆E内切于点M,求动圆P的圆心P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知:向量$\overrightarrow{a}$=(1,$\sqrt{3}$),向量$\overrightarrow{b}$与向量$\overrightarrow{a}$所成的角为$\frac{π}{3}$,且$\overrightarrow{a}$•$\overrightarrow{b}$=4.
(1)求向量$\overrightarrow{b}$;
(2)设$\overrightarrow{m}$=$\overrightarrow{a}$+k$\overrightarrow{b}$,$\overrightarrow{n}$=3k$\overrightarrow{a}$-2$\overrightarrow{b}$(k为正实数),当$\overrightarrow{m}$⊥$\overrightarrow{n}$时,判断$\overrightarrow{m}$+$\overrightarrow{n}$与$\overrightarrow{a}$是否共线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点A(-3,2),B(1,4),P为线段AB的中点,则向量$\overrightarrow{BP}$的坐标为(  )
A.(-2,-1)B.(2,1)C.(4,2)D.(-8,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在约束条件$\left\{\begin{array}{l}{x+y≤8}\\{x+y≥2}\\{y≤\frac{1}{2}x+5}\\{x≥0,y≥0}\end{array}\right.$下,求x=2x-y的最小值与最大值.

查看答案和解析>>

同步练习册答案