精英家教网 > 高中数学 > 题目详情
(2012•肇庆一模)如图,已知斜三棱柱(侧棱不垂直于底面)ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,BC=2,AC=2
3
,AB=2
2
,AA1=A1C=
6

(Ⅰ) 求侧棱B1B在平面A1ACC1上的正投影的长度.
(Ⅱ) 设AC的中点为D,证明A1D⊥底面ABC;
(Ⅲ) 求侧面A1ABB1与底面ABC所成二面角的余弦值.
分析:(Ⅰ)由B1B∥平面A1ACC1,可得侧棱B1B在平面A1ACC1上的正投影的长度等于侧棱B1B的长度;
(Ⅱ)利用平面A1ACC1⊥平面ABC,可证A1D⊥底面ABC;
(Ⅲ)要求侧面A1ABB1与底面ABC所成二面角的大小,利用三垂线定理作出角,即作DE⊥AB,垂足为E,连A1E,则由A1D⊥面ABC,得A1E⊥AB.所以∠A1ED是面A1ABB1与面ABC所成二面角的平面角,求解即可.
解答:(Ⅰ)解:∵ABC-A1B1C1是斜三棱柱,∴B1B∥平面A1ACC1
故侧棱B1B在平面A1ACC1上的正投影的长度等于侧棱B1B的长度.(2分)
又BB1=AA1=
6
,故侧棱B1B在平面A1ACC1的正投影的长度等于
6
.(3分)
(Ⅱ)证明:∵AC=2
3
,AA1=A1C=
6
,∴AC2=AA12+AC12
∴△AA1C是等腰直角三角形,(5分)
又D是斜边AC的中点,∴A1D⊥AC(6分)
∵平面A1ACC1⊥平面ABC,∴A1D⊥底面ABC(7分)
(Ⅲ)解:作DE⊥AB,垂足为E,连A1E,
∵A1D⊥面ABC,AB?面ABC,∴A1D⊥AB,
∵A1D∩DE=D,∴AB⊥平面A1ED,(8分)
从而有A1E⊥AB,∴∠A1ED是面A1ABB1与面ABC所成二面角的平面角. (9分)
∵BC=2,AC=2
3
,AB=2
2
,∴AC2=BC2+AB2
∴△ABC是直角三角形,AB⊥BC
∴ED∥BC,
又D是AC的中点,BC=2,AC=2
3
,∴DE=1,A1D=AD=
3

∴A1E=
A1D2+DE2
=2
∴cos∠A1ED=
DE
A1E
=
1
2
,即侧面A1ABB1与底面ABC所成二面角的余弦值为
1
2
.(14分)
点评:本题考查面面垂直,考查线面垂直,考查面面角,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•肇庆一模)已知四棱锥P-ABCD如图1所示,其三视图如图2所示,其中正视图和侧视图都是直角三角形,俯视图是矩形.
(1)求此四棱锥的体积;
(2)若E是PD的中点,求证:AE⊥平面PCD;
(3)在(2)的条件下,若F是PC的中点,证明:直线AE和直线BF既不平行也不异面.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•肇庆一模)已知数列{an}是一个等差数列,且a2=1,a5=-5,
(1)求{an}的通项公式an和前n项和Sn
(2)设Cn=
5-an2
bn=2Cn
,证明数列{bn}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•肇庆一模)已知数列{an}是一个等差数列,且a2=1,a5=-5.
(Ⅰ)求{an}的通项an
(Ⅱ)设cn=
5-an2
bn=2cn,求T=log2b1+log2b2+log2b3+…+log2bn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•肇庆一模)已知集合M={0,1,2},集合N满足N⊆M,则集合N的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•肇庆一模)已知函数f(x)=lgx的定义域为M,函数y=
2x,x>2
-3x+1,x<1
的定义域为N,则M∩N=(  )

查看答案和解析>>

同步练习册答案