分析 由已知得$\frac{{a}_{n+1}}{{a}_{n}}=1+(n-1)×1=n$,由此利用累乘法能求出an,从而能求出a101-a100的值.
解答 解:∵数列{an}满足a1=a2=1,$\frac{{a}_{n+2}}{{a}_{n+1}}$-$\frac{{a}_{n+1}}{{a}_{n}}$=1,
∴$\frac{{a}_{2}}{{a}_{1}}=1$,
∴{$\frac{{a}_{n+1}}{{a}_{n}}$}是首项为1,公差为1的等差数列,
∴$\frac{{a}_{n+1}}{{a}_{n}}=1+(n-1)×1=n$,
∴${a}_{n}={a}_{1}×\frac{{a}_{2}}{{a}_{1}}×\frac{{a}_{3}}{{a}_{2}}×…×\frac{{a}_{n}}{{a}_{n-1}}$
=1×1×2×…×(n-1)=(n-1)!.
∴a101-a100=100!-99!=100×99!=9.3326215443944×10157.
故答案为:9.3326215443944×10157.
点评 本题考查数列的第101项和第100项的差的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.
科目:高中数学 来源: 题型:解答题
项目方式 | 基本费 | 网络使用费 | 通信费 |
963 | 0 | 0.05元/min | 0.02元/min |
169 | 100元/月 | 1元/h |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | 5 | C. | 2$\sqrt{5}$-1 | D. | 2$\sqrt{5}$+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com