精英家教网 > 高中数学 > 题目详情
将函数f(x)=cosxsinx的图象向左平移m个单位长度后,所得到的图象关于y轴对称,则正数m的最小值是
 
考点:二倍角的正弦,函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:利用二倍角的正弦可得f(x)=cosxsinx=
1
2
sin2x,再利用三角函数的平移变换可得f(x+m)=
1
2
sin(2x+2m),其图象关于y轴对称,可求得m=
2
+
π
4
(k∈Z),又m>0,
从而可得答案.
解答: 解:∵f(x)=cosxsinx=
1
2
sin2x,
∴f(x+m)=
1
2
sin[2(x+m)]=
1
2
sin(2x+2m),
∵y=
1
2
sin(2x+2m)的图象关于y轴对称,
∴2m=kπ+
π
2
,∴m=
2
+
π
4
(k∈Z),又m>0,
∴mmin=
π
4

故答案为:
π
4
点评:本题考查二倍角的正弦及函数y=Asin(ωx+φ)的图象变换,考查余弦函数的对称性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知单位向量
a
=(x,y),
b
=(2,-1),若
a
b
,则|2x+y|的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z满足:z+1=
.
z
(1+i),其中
.
z
是复数z的共轭复数,则z•
.
z
等于(  )
A、3B、5C、8D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+lg|x|,其定义域为D,对于属于D的任意x1,x2有如下条件:①x1>x2,②x12>x22,③x1>|x2|,④|x1|>x2,其中能使f(x1)>f(x2)恒成立的条件是
 
(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2asin2x+4cos2x-3,若对x∈R均有f(x)≥f(-
π
3
)恒成立.
(Ⅰ)求实数a的值及函数f(x)的单调递减区间;
(Ⅱ)在△ABC中,a,b,c分别为内角A,B,C所对的边,且a=2,f(A)=1,求△ABC的内切圆半径r的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[20,80]内任取一个实数m,则实数m落在区间[50,75]的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=logax与g(x)=b-x(其中a>0,a≠1,ab=1)的图象可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐系xOy中,已知直线y=
3
被圆C1:x2+y2+8x+F=0截得弦长为2.
(1)求圆C1的方程;
(2)设P是y轴上的动点,PA,PB分别切圆C1于A,B两点,求动弦AB中点的轨迹方程;
(3)设圆C1和x轴相交于C,D两点,点Q为圆C1上不同于C,D的任意一点,直线QC,QD交y轴于M,N两点,当点Q变化时,以MN为直径的圆C2是否经过圆C1内一定点?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[
a
2
,a+1]上不单调,求a|a-3|的值域.

查看答案和解析>>

同步练习册答案