¾«Ó¢¼Ò½ÌÍø½«ÊýÁÐ{an}ÖеÄËùÓÐÏÿһÐбÈÉÏÒ»ÐжàÒ»ÏîµÄ¹æÔòÅųÉÈçÏÂÊý±í£ºa1a2a3a4a5a6a7a8a9a10¡­¼Ç±íÖеĵÚÒ»ÁÐÊýa1£¬a2£¬a4£¬a7£¬¡­¹¹³ÉµÄÊýÁÐΪ{bn}£¬b1=a1=1£®SnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬ÇÒÂú×ã
2bn
bnSn-
S
2
n
=1(n¡Ý2)
£®
£¨¢ñ£©Ö¤Ã÷ÊýÁÐ{
1
Sn
}
³ÉµÈ²îÊýÁУ¬²¢ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨¢ò£©ÉϱíÖУ¬Èô´ÓµÚÈýÐÐÆ𣬵ÚÒ»ÐÐÖеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¾ù¹¹³ÉµÈ±ÈÊýÁУ¬ÇÒ¹«±ÈΪͬһ¸öÕýÊý£®µ±a81=-
4
91
ʱ£¬ÇóÉϱíÖеÚk£¨k¡Ý3£©ÐÐËùÓÐÏîµÄºÍ£®
·ÖÎö£º£¨¢ñ£©ÓÉÌâÒâËù¸øµÄÒÑÖªµÈʽÌصãÓ¦¿¼ÂÇÓ¦ÓÃÒÑÖªÊýÁеÄÇ°nÏîºÍÇóÆäͨÏîÕâÒ»¹«Ê½À´Ñ°Çó³ö·£¬µÃµ½SnÓëSSn-1Ö®¼äµÄµÝÍƹØϵ£¬ÏÈÇó³öSnµÄͨÏʽ¼´¿ÉµÃÖ¤£¬½ÓÏÂÀ´Çó{bn}µÄͨÏʽ£»
£¨¢ò£©ÓÉÌâÒâµÚÒ»ÁÐÊýa1£¬a2£¬a4£¬a7£¬¡­¹¹³ÉµÄÊýÁÐΪ{bn}£¬b1=a1=1£¬ÓÖÒÑÖª{bn}µÄͨÏʽºÍa81µÄÖµ£¬Ó¦¸ÃÏÖÓйæÂÉÅжÏÕâÒ»ÏòλÓÚͼʾÖеľßÌåλÖã¬ÓдӵÚÈýÐÐÆ𣬵ÚÒ»ÐÐÖеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¾ù¹¹³ÉµÈ±ÈÊýÁУ¬ÇÒ¹«±ÈΪͬһ¸öÕýÊý½ø¶øÇó½â£®
½â´ð£º½â£º£¨¢ñ£©Ö¤Ã÷£ºÓÉÒÑÖª£¬µ±n¡Ý2ʱ£¬
2bn
bnSn-
S
2
n
=1
£¬ÓÖSn=b1+b2+¡­+bn£¬
ËùÒÔ
2(Sn-Sn-1)
(Sn-Sn-1)Sn-
S
2
n
=1
?
2(Sn-Sn-1)
-Sn-1Sn
=1
?
1
Sn
-
1
Sn-1
=
1
2
£¬
ÓÖS1=b1=a1=1£®ËùÒÔÊýÁÐ{
1
Sn
}
ÊÇÊ×ÏîΪ1£¬¹«²îΪ
1
2
µÄµÈ²îÊýÁУ®
ÓÉÉÏ¿ÉÖª
1
Sn
=1+
1
2
(n-1)=
n+1
2
£¬?Sn=
2
n+1
£®
ËùÒÔµ±n¡Ý2ʱ£¬bn=Sn-Sn-1=
2
n+1
-
2
n
=-
2
n(n+1)
£®
Òò´Ëbn=
1£¬n=1
-
2
n(n+1)
£¬n¡Ý2

£¨¢ò£©ÉèÉϱíÖдӵÚÈýÐÐÆð£¬Ã¿ÐеĹ«±È¶¼Îªq£¬ÇÒq£¾0£®
ÒòΪ1+2+¡­+12=
12¡Á13
2
=78
£¬
ËùÒÔ±íÖеÚ1ÐÐÖÁµÚ12Ðй²º¬ÓÐÊýÁÐ{an}µÄÇ°78Ï¹Êa81ÔÚ±íÖеÚ13ÐеÚÈýÁУ¬
Òò´Ëa81=b13q2=-
4
91
£®ÓÖb13=-
2
13¡Á14
£¬ËùÒÔq=2£®
¼Ç±íÖеÚk£¨k¡Ý3£©ÐÐËùÓÐÏîµÄºÍΪS£¬
ÔòS=
bk(1-qk)
1-q
=-
2
k(k+1)
(1-2k)
1-2
=
2
k(k+1)
(1-2k)(k¡Ý3)
£®
µãÆÀ£º£¨1£©´ËÎÊÖص㿼²éÁËÊýÁÐÖеÄÒÑ֪ǰnÏîµÄºÍÇó½âͨÏîÕâÒ»¹«Ê½£¬»¹¿¼²éÁ˵ȲîÊýµÄ¶¨Ò壻
£¨2£©´ËÎÊÖص㿼²éÁËÓÉÌâÒ⼰ͼÐÎ׼ȷÕÒ¹æÂÉ£¬»¹¿¼²éÁ˵ȱÈÊýÁеÄͨÏò¹«Ê½¼°ÓÐÊýÁÐͨÏòÇóÆäËùÓÐÏîºÍ£¬Í¬Ê±»¹¿¼²éÁË·½³ÌµÄ˼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍø½«ÊýÁÐ{an}ÖеÄËùÓÐÏÿһÐбÈÉÏÒ»ÐжàÒ»ÏîµÄ¹æÔòÅųÉÈçÏÂ±í£º
¼Ç±íÖеĵÚÒ»ÁÐÊýa1£¬a2£¬a4£¬a7£¬¡­£¬¹¹³ÉµÄÊýÁÐΪ{bn}£¬b1=a1=1£¬SnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬ÇÒÂú×ã
2bn
bnSn-
S
2
n
=1(n¡Ý2)
£®
£¨1£©ÇóÖ¤ÊýÁÐ{
1
Sn
}
³ÉµÈ²îÊýÁУ¬²¢ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©ÉϱíÖУ¬Èôa81ÏîËùÔÚÐеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¹¹³ÉµÈ±ÈÊýÁУ¬ÇÒ¹«±ÈqΪÕýÊý£¬Çóµ±a81=-
4
91
ʱ£¬¹«±ÈqµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÕûÊýÊýÁÐ{an}Âú×㣺a1=1£¬a2=2£¬ÇÒ2an-1£¼an-1+an+1£¼2an+1£¨n¡ÊN£¬n¡Ý2£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©½«ÊýÁÐ{an}ÖеÄËùÓÐÏîÒÀ´Î°´ÈçͼËùʾµÄ¹æÂÉÑ­»·µØÅųÉÈçÏÂÈý½ÇÐÎÊý±í£º
¾«Ó¢¼Ò½ÌÍø
¡­
ÒÀ´Î¼ÆËã¸÷¸öÈý½ÇÐÎÊý±íÄÚ¸÷ÐÐÖеĸ÷ÊýÖ®ºÍ£¬ÉèÓÉÕâЩºÍ°´Ô­À´ÐеÄÇ°ºó˳Ðò¹¹³ÉµÄÊýÁÐΪ{bn}£¬Çób5+b100µÄÖµ£»
£¨3£©Áîcn=2+ban+b•2an-1£¨bΪ´óÓÚµÈÓÚ3µÄÕýÕûÊý£©£¬ÎÊÊýÁÐ{cn}ÖÐÊÇ·ñ´æÔÚÁ¬ÐøÈýÏî³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öËùÓгɵȱÈÊýÁеÄÁ¬ÐøÈýÏÈô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

½«ÊýÁÐ{an}ÖеÄËùÓÐÏÿһÐбÈÉÏÒ»ÐжàÒ»ÏîµÄ¹æÔòÅųÉÈçÏÂÊý±í£®¼Ç±íÖеÚÒ»ÁÐÊýa1£¬a2£¬a4£¬a7£¬¡­¹¹³ÉµÄÊýÁÐΪ{bn}£¬b1=a1=1£®SnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬ÇÒÂú×ã2bn=bnSn-Sn2£¨n¡Ý2£¬n¡ÊN*£©£®
£¨1£©Ö¤Ã÷ÊýÁÐ{
1
Sn
}ÊǵȲîÊýÁУ¬²¢ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©Í¼ÖУ¬Èô´ÓµÚÈýÐÐÆð£¬Ã¿Ò»ÐÐÖеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¹¹³ÉµÈ±ÈÊýÁУ¬ÇÒ¹«±ÈΪͬһ¸öÕýÊý£®µ±a81=-
4
91
ʱ£¬ÇóÉϱíÖеÚk£¨k¡Ý3£©ÐÐËùÓÐÊýµÄºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

½«ÊýÁÐ{an}ÖеÄËùÓÐÏÿһÐбÈÉÏÒ»ÐжàÒ»ÏîµÄ¹æÔòÅųÉÈçÏÂ±í£º
¼Ç±íÖеĵÚÒ»ÁÐÊýa1£¬a2£¬a4£¬a7£¬¡­£¬¹¹³ÉµÄÊýÁÐΪ{bn}£¬b1=a1=1£¬SnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬ÇÒÂú×ãÊýѧ¹«Ê½£®
£¨1£©ÇóÖ¤ÊýÁÐÊýѧ¹«Ê½³ÉµÈ²îÊýÁУ¬²¢ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©ÉϱíÖУ¬Èôa81ÏîËùÔÚÐеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¹¹³ÉµÈ±ÈÊýÁУ¬ÇÒ¹«±ÈqΪÕýÊý£¬Çóµ±Êýѧ¹«Ê½Ê±£¬¹«±ÈqµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011Äê½­ËÕÊ¡»´°²ÊкéÔóÖÐѧ¸ß¿¼ÊýѧģÄâÊÔ¾í£¨3£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÕûÊýÊýÁÐ{an}Âú×㣺a1=1£¬a2=2£¬ÇÒ2an-1£¼an-1+an+1£¼2an+1£¨n¡ÊN£¬n¡Ý2£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©½«ÊýÁÐ{an}ÖеÄËùÓÐÏîÒÀ´Î°´ÈçͼËùʾµÄ¹æÂÉÑ­»·µØÅųÉÈçÏÂÈý½ÇÐÎÊý±í£º

¡­
ÒÀ´Î¼ÆËã¸÷¸öÈý½ÇÐÎÊý±íÄÚ¸÷ÐÐÖеĸ÷ÊýÖ®ºÍ£¬ÉèÓÉÕâЩºÍ°´Ô­À´ÐеÄÇ°ºó˳Ðò¹¹³ÉµÄÊýÁÐΪ{bn}£¬Çób5+b100µÄÖµ£»
£¨3£©ÁbΪ´óÓÚµÈÓÚ3µÄÕýÕûÊý£©£¬ÎÊÊýÁÐ{cn}ÖÐÊÇ·ñ´æÔÚÁ¬ÐøÈýÏî³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öËùÓгɵȱÈÊýÁеÄÁ¬ÐøÈýÏÈô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸