16£®ÒÑÖªÍÖÔ²£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬ÇÒ¹ýµã$£¨-1£¬\frac{3}{2}£©$£¬ÓÒ¶¥µãΪA£¬¾­¹ýµãF2µÄ¶¯Ö±ÏßlÓëÍÖÔ²½»ÓÚB£¬CÁ½µã£®
£¨1£©ÇóÍÖÔ²·½³Ì£»
£¨2£©¼Ç¡÷AOBºÍ¡÷AOCµÄÃæ»ý·Ö±ðΪS1ºÍS2£¬Çó|S1-S2|µÄ×î´óÖµ£»
£¨3£©ÔÚxÖáÉÏÊÇ·ñ´æÔÚÒ»µãT£¬Ê¹µÃµãB¹ØÓÚxÖáµÄ¶Ô³ÆµãÂäÔÚÖ±ÏßTCÉÏ£¿Èô´æÔÚ£¬ÔòÇó³öTµã×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÀûÓý¹µãΪF£¨1£¬0£©£¬ÇÒ¹ýµã£¨-1£¬$\frac{3}{2}$£©£¬Áгö·½³Ì£¬È»ºóÇó½âÍÖÔ²·½³Ì£»
£¨2£©ÉèÖ±Ïßl·½³ÌΪ£ºx=my+1£®ÓëÍÖÔ²ÁªÁ¢£¬ÉèB£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬£¨y1£¾0£¬y2£¼0£©£¬ÀûÓÃΤ´ï¶¨Àí£¬Í¨¹ýµ±m=0ʱ£¬ÏÔÈ»|S1-S2|=0£»µ±m¡Ù0ʱ£¬|S1-S2|=|$\frac{1}{2}$•2•y1-$\frac{1}{2}$•2•£¨-y2£©|=|y1+y2|£¬Çó½â|S1-S2|µÄ×î´óÖµ£»
£¨3£©¼ÙÉèÔÚxÖáÉÏ´æÔÚÒ»µãT£¨t£¬0£©Âú×ãÒÑÖªÌõ¼þ£¬ÀûÓÃkTB=-kTC£¬Çó³öt©q˵Ã÷´æÔÚµãT£¨4£¬0£©Âú×ãÌõ¼þ£®

½â´ð ½â£º£¨1£©ÓÉÒÑÖªc=1£¬$\frac{1}{{a}^{2}}$+$\frac{9}{4{b}^{2}}$=1£¬
ÓÖa2-b2=1£¬
½âµÃa=2£¬b=$\sqrt{3}$£¬
¼´ÓÐÍÖÔ²·½³ÌΪ£º$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£»
£¨2£©ÉèÖ±Ïßl·½³ÌΪ£ºx=my+1£¬
ÁªÁ¢ÍÖÔ²·½³ÌµÃ£¨3m2+4£©y2+6my-9=0£¬
ÉèB£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬£¨y1£¾0£¬y2£¼0£©£¬
Ôòy1+y2=-$\frac{6m}{4+3{m}^{2}}$£¬
µ±m=0ʱ£¬ÏÔÈ»|S1-S2|=0£»
µ±m¡Ù0ʱ£¬|S1-S2|=|$\frac{1}{2}$•2•y1-$\frac{1}{2}$•2•£¨-y2£©|
=|y1+y2|=$\frac{6|m|}{4+3{m}^{2}}$=$\frac{6}{3|m|+\frac{4}{|m|}}$¡Ü$\frac{6}{2\sqrt{3•4}}$=$\frac{\sqrt{3}}{2}$£¬
µ±ÇÒ½öµ±3|m|=$\frac{4}{|m|}$£¬¼´m=¡À$\frac{2\sqrt{3}}{3}$ʱȡµÈºÅ£¬
×ۺϵÃm=¡À$\frac{2\sqrt{3}}{3}$ʱʱ£¬|S1-S2|µÄ×î´óֵΪ$\frac{\sqrt{3}}{2}$£»
£¨3£©¼ÙÉèÔÚxÖáÉÏ´æÔÚÒ»µãT£¨t£¬0£©Âú×ãÒÑÖªÌõ¼þ£¬
ÔòkTB=-kTC
¼´$\frac{{y}_{1}}{{x}_{1}-t}$=-$\frac{{y}_{2}}{{x}_{2}-t}$£¬¼´Îªy1£¨x2-t£©+y2£¨x1-t£©=0£¬
⇒y1£¨my2+1-t£©+y2£¨my1+1-t£©=0⇒2my1y2+£¨1-t£©£¨y1+y2£©=0£¬
¼´ÓÐ2m•$\frac{-9}{4+3{m}^{2}}$+£¨1-t£©•$\frac{-6m}{4+3{m}^{2}}$=0£¬
ÕûÀíµÃ£º£¨4-t£©•m=0£¬
ÓÉmÈÎÒ⣬¼´ÓÐt=4©q
¹Ê´æÔÚµãT£¨4£¬0£©Âú×ãÌõ¼þ©q

µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØϵµÄ×ÛºÏÓ¦Óã¬ÍÖÔ²·½³ÌµÄÇ󷨣¬´æÔÚÐÔÎÊÌâµÄ´¦Àí·½·¨£¬Î¤´ï¶¨ÀíÒÔ¼°»ù±¾²»µÈʽµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{sinx£¬x¡Ý1}\\{{e}^{x}£¬x£¼1}\end{array}\right.$£®
£¨1£©Èôf£¨x£©¡Ý1£¬ÇóxµÄÈ¡Öµ·¶Î§£»
£¨2£©Çóº¯Êýf£¨x£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ÉèÕý·½ÌåABCD-A1B1C1D1ÖУ¬MΪAA1Éϵ㣬A1M£ºMA=3£º1£¬Çó½ØÃæB1D1MÓëµ×ÃæABCDËù³É¶þÃæ½Ç£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÍÖÔ²C£º4x2+y2=16
£¨1£©ÇóÍÖÔ²CµÄ³¤Ö᳤ºÍ¶ÌÖ᳤    
£¨2£©ÇóÍÖÔ²CµÄ½¹µã×ø±êºÍÀëÐÄÂÊ
£¨3£©Ö±Ïßl£ºy=-2x+4ÓëÍÖÔ²CÏཻÓÚA£¬BÁ½µã£¬ÇóABµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÍÖÔ²$\frac{x^2}{4}+\frac{y^2}{3}=1$µÄ×󶥵ãΪA£¬ÓÒ½¹µãΪF£¬¹ýµãFµÄÖ±Ïß½»ÍÖÔ²ÓÚB£¬CÁ½µã£®
£¨¢ñ£©Çó¸ÃÍÖÔ²µÄÀëÐÄÂÊ£»
£¨¢ò£©ÉèÖ±ÏßABºÍAC·Ö±ðÓëÖ±Ïßx=4½»ÓÚµãM£¬N£¬ÎÊ£ºxÖáÉÏÊÇ·ñ´æÔÚ¶¨µãPʹµÃMP¡ÍNP£¿Èô´æÔÚ£¬Çó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÉèP¡¢QÊǵ¥Î»Õý·½ÌåAC1µÄÃæAA1D1D¡¢ÃæA1B1C1D1µÄÖÐÐÄ£®
£¨1£©Çó¡ÏD1B1CµÄ´óС£®
£¨2£©Ö¤Ã÷£ºPQ¡ÎƽÃæAA1B1B£®
£¨3£©ÇóÒìÃæÖ±ÏßPQºÍB1CËù³ÉµÄ½Ç£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=|x-a|-$\frac{a}{2}$lnx£¬a¡ÊR£¬Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£®ÔÚƽÐÐÁùÃæÌåABCD-A1B1C1D1ÖУ®
£¨1£©Èçͼ1£¬ÒÑÖª$\overrightarrow{DA}$=$\overrightarrow{a}$£¬$\overrightarrow{DC}$=$\overrightarrow{b}$£¬$\overrightarrow{D{D}_{1}}$=$\overrightarrow{c}$£¬µãGÊDzàÃæB1BCC1µÄÖÐÐÄ£¬ÊÔÓÃÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$£¬$\overrightarrow{c}$±íʾÏÂÁÐÏòÁ¿£º$\overrightarrow{D{B}_{1}}$£¬$\overrightarrow{B{A}_{1}}$£¬$\overrightarrow{C{A}_{1}}$£¬$\overrightarrow{DG}$£®
£¨2£©Èçͼ2£¬µãE£¬F£¬G·Ö±ðÊÇ$\overrightarrow{{A}_{1}{D}_{1}}$£¬$\overrightarrow{{D}_{1}D}$£¬$\overrightarrow{{D}_{1}{C}_{1}}$µÄÖе㣬ÇëÑ¡ÔñÇ¡µ±µÄ»ùµ×ÏòÁ¿£®Ö¤Ã÷£º¢ÙEG¡ÎAC£»¢ÚƽÃæEFG¡ÎƽÃæAB1C£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖª¼¯ºÏA={£¨x£¬y£©|$\sqrt{\frac{{x}^{2}}{9}}+\sqrt{\frac{{y}^{2}}{4}}¡Ü1$}£¬B={£¨x£¬y£©|x-2y¡Ü0}£¬ÇøÓòM=A¡ÉB£¬ÔòÇøÓòMµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®6B£®8C£®12D£®24

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸