精英家教网 > 高中数学 > 题目详情

【题目】已知直线是曲线的切线.

1)求函数的解析式,

2)若,证明:对于任意有且仅有一个零点.

【答案】12)证明见解析

【解析】

1)对函数求导,并设切点,利用点既在曲线上、又在切线上,列出方程组,解得,即可得答案;

2)当x充分小时,当x充分大时,可得至少有一个零点. 再证明零点的唯一性,即对函数求导得,对两种情况讨论,即可得答案.

1)根据题意,,设直线与曲线相切于点.

根据题意,可得,解之得

所以.

2)由(1)可知

则当x充分小时,当x充分大时,∴至少有一个零点.

①若,则上单调递增,∴有唯一零点.

②若,得有两个极值点,

,∴,∴.

上单调递增,在上单调递减,在上单调递增.

∴极大值为.,又

(016)上单调递增,

有唯一零点.

综上可知,对于任意有且仅有一个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司欲对员工饮食习惯进行一次调查,从某科室的100人中的饮食结构调查结果统计如下表.

主食蔬菜

主食肉类

总计

不超过45

15

40

45岁以上

20

总计

1)完成列联表,并判断能否有99%的把握认为员工的饮食习惯与年龄有关?

2)在45岁以上员工中按照饮食习惯进行分层抽样抽出一个容量为6的样本,从这6个人中随机抽取3个人,求这3个人都主食蔬菜的概率.

附:

0.050

0.010

0.001

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数x满足x24ax+3a20a0),命题q:实数x满足x25x+60

1)若a1,且pq为真命题,求实数x的取值范围;

2)若pq的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“随机模拟方法”计算曲线与直线所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[1e]上的均匀随机数xi10个在区间[01]上的均匀随机数,其数据如下表的前两行.

x

2.50

1.01

1.90

1.22

2.52

2.17

1.89

1.96

1.36

2.22

y

0.84

0.25

0.98

0.15

0.01

0.60

0.59

0.88

0.84

0.10

lnx

0.90

0.01

0.64

0.20

0.92

0.77

0.64

0.67

0.31

0.80

由此可得这个曲边三角形面积的一个近似值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,以下结论正确的个数为(

①当时,函数的图象的对称中心为

②当时,函数上为单调递减函数;

③若函数上不单调,则

④当时,上的最大值为15

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知曲线C的参数方程为α为参数,直线ly=kxk0),以O为极点,x轴正半轴为极轴建立极坐标系.

(Ⅰ)求曲线C的极坐标方程;

(Ⅱ)若直线l与曲线C交于AB两点,求|OA||OB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,左、右焦点分别是,椭圆上短轴的一个端点与两个焦点构成的三角形的面积为

(1)求椭圆的方程;

(2)过作垂直于轴的直线交椭圆两点(点在第二象限),是椭圆上位于直线两侧的动点,若,求证:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知多面体的底面是边长为的菱形, 底面 ,且.

(1)证明:平面平面

(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一批用于手电筒的电池,每节电池的寿命服从正态分布(寿命单位:小时).考虑到生产成本,电池使用寿命在内是合格产品.

1)求一节电池是合格产品的概率(结果四舍五入,保留一位小数);

2)根据(1)中的数据结果,若质检部门检查4节电池,记抽查电池合格的数量为,求随机变量的分布列、数学期望及方差.

附:若随机变量服从正态分布,则.

查看答案和解析>>

同步练习册答案