精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)若上单调递增,求的取值范围;

2)证明:当时,不等式上恒成立.

【答案】1;(2)证明见解析.

【解析】

1)由题意得出对任意的恒成立,利用参变量分离法得出上恒成立.构造函数,利用导数求出函数的最小值,由此可得出实数的取值范围;

2)分来证明不等式成立,在时显然成立,在时,可考虑证,即证,构造函数,利用导数分析函数的单调性与最值,即可得证.

1)因为,所以

因为函数上单调递增,所以上恒成立,

上恒成立,即上恒成立.

,则

所以当时,,函数单调递减;当时,,函数单调递增.

所以,所以,即

的取值范围为

2)显然,当时,上恒成立.

时,,所以可考虑证,即证

,则

时,,即函数上单调递增,

所以当时,

所以当时,

综上,当时,不等式上恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知若满足有四个,则的取值范围为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,四边形ABCD为平行四边形,且点在底面上的投影H恰为CD的中点.

1)棱BC上存在一点N,使得AD⊥平面,试确定点N的位置,说明理由;

2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有6名选手参加才艺比赛,其中男、女选手各3名,且3名男选手分别表演歌唱、舞蹈和魔术,3名女选手分别表演歌唱、舞蹈和魔术,若要求相邻出场的选手性别不同且表演的节目不同,则不同的出场方式的种数为(

A.6B.12C.18D.24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海南盛产各种名贵树木,如紫檀、黄花梨等.在实际测量单根原木材体积时,可以检量木材的实际长度(检尺长)和小头直径(检尺径),再通过国家公布的原木材积表直接查询得到,原木材积表的部分数据如下所示:

检尺径

检尺长(

2.0

2.2

2.4

2.5

2.6

材积(

8

0.0130

0.0150

0.0160

0.0170

0.0180

10

0.0190

0.0220

0.0240

0.0250

0.0260

12

0.0270

0.0300

0.0330

0.0350

0.0370

14

0.0360

0.0400

0.0450

0.0470

0.0490

16

0.0470

0.0520

0.0580

0.0600

0.0630

18

0.0590

0.0650

0.0720

0.0760

0.0790

20

0.0720

0.0800

0.0880

0.0920

0.0970

22

0.0860

0.0960

0.1060

0.1110

0.1160

24

0.1020

0.1140

0.1250

0.1310

0.1370

若小李购买了两根紫檀原木,一根检尺长为,检尺径为,另一根检尺长为,检尺径为,根据上表,可知两根原木的材积之和为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)在定义域(0+∞)上是单调函数,且x∈(0+∞),ffx)﹣ex+x)=e.若不等式2fx)﹣f′(x)﹣3axx∈(0+∞)恒成立,则a的取值范围是(

A.(﹣∞,e2]B.(﹣∞,e1]C.(﹣∞,2e3]D.(﹣∞,2e1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数极值点的个数;

2)当时,不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数处取得极大值或极小值,则称为函数的极值点设函数

(1)若函数上无极值点,求的取值范围;

(2)求证:对任意实数,在函数的图象上总存在两条切线相互平行;

(3)当时,若函数的图象上存在的两条平行切线之间的距离为4,问;这样的平行切线共有几组?请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】单位正方体在空间直角坐标系中的位置如图所示,动点,其中,设由三点确定的平面截该正方体的截面为,那么(

A.对任意点,存在点使截面为三角形

B.对任意点,存在点使截面为正方形

C.对任意点,截面都为梯形

D.对任意点,存在点使得截面为矩形

查看答案和解析>>

同步练习册答案