精英家教网 > 高中数学 > 题目详情

在平面直角坐标系中,已知圆 的圆心为,过点且斜率为的直线与圆相交于不同的两点
(Ⅰ)求的取值范围;
(Ⅱ)以OA,OB为邻边作平行四边形OADB,是否存在常数,使得直线OD与PQ平行?如果存在,求值;如果不存在,请说明理由.

(Ⅰ)先设出直线的方程,由直线与圆有两个不同的交战,故联立圆方程可得得一元二次方程,由判别式大于0可得K的取值范围为;(Ⅱ)没有符合题意的常数,理由见解析.

解析试题分析:(Ⅰ);(Ⅱ)由向量加减法,可利用向量处理,设,则,由共线等价于,然后由根与系数关系可得,由(Ⅰ)知,故没有符合题意的常数.注意运用向量法和方程的思想.
试题解析:(Ⅰ)圆的方程可写成,所以圆心为
且斜率为的直线方程为
代入圆方程得,整理得.   ①
直线与圆交于两个不同的点等价于
解得,即的取值范围为
(Ⅱ)设,则
由方程①,    ②
.  ③

所以共线等价于
将②③代入上式,解得 
由(Ⅰ)知,故没有符合题意的常数
考点:1.直线与圆的位置关系;2.一元二次方程的根的判别式;3.向量共线的充要条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,已知圆:和圆:

(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程;
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知以点 为圆心的圆与直线 相切,过点的动直线 与圆 相交于两点,的中点,直线相交于点 .

(1)求圆的方程;
(2)当时,求直线的方程;
(3)是否为定值?如果是,求出其定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C的半径为2,圆心在轴正半轴上,直线与圆C相切
(1)求圆C的方程;
(2)过点的直线与圆C交于不同的两点且为
求:的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的圆心在点,点,求;
(1)过点的圆的切线方程;
(2)点是坐标原点,连结,求的面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C的半径为2,圆心在轴正半轴上,直线与圆C相切
(1)求圆C的方程;
(2)过点的直线与圆C交于不同的两点且为时,求:的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,点,直线,设圆的半径为,圆心在上.

(1)若圆心也在直线上,过点作圆的切线,求切线的方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆内一点过点的直线交圆 两点,且满足 (为参数).
(1)若,求直线的方程;
(2)若求直线的方程;
(3)求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
己知圆C: (x – 2 )+ y 2 =" 9," 直线l:x + y = 0.
(1) 求与圆C相切, 且与直线l平行的直线m的方程;
(2) 若直线n与圆C有公共点,且与直线l垂直,求直线n在y轴上的截距b的取值范围;

查看答案和解析>>

同步练习册答案