在平面直角坐标系中,已知圆 的圆心为,过点且斜率为的直线与圆相交于不同的两点.
(Ⅰ)求的取值范围;
(Ⅱ)以OA,OB为邻边作平行四边形OADB,是否存在常数,使得直线OD与PQ平行?如果存在,求值;如果不存在,请说明理由.
(Ⅰ)先设出直线的方程,由直线与圆有两个不同的交战,故联立圆方程可得得一元二次方程,由判别式大于0可得K的取值范围为;(Ⅱ)没有符合题意的常数,理由见解析.
解析试题分析:(Ⅰ);(Ⅱ)由向量加减法,可利用向量处理,设,则,由与共线等价于,然后由根与系数关系可得,由(Ⅰ)知,故没有符合题意的常数.注意运用向量法和方程的思想.
试题解析:(Ⅰ)圆的方程可写成,所以圆心为,
过且斜率为的直线方程为.
代入圆方程得,整理得. ①
直线与圆交于两个不同的点等价于,
解得,即的取值范围为.
(Ⅱ)设,则,
由方程①, ②
又. ③
而.
所以与共线等价于,
将②③代入上式,解得
由(Ⅰ)知,故没有符合题意的常数.
考点:1.直线与圆的位置关系;2.一元二次方程的根的判别式;3.向量共线的充要条件.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,已知圆:和圆:
(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程;
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知以点 为圆心的圆与直线 相切,过点的动直线 与圆 相交于两点,是的中点,直线与相交于点 .
(1)求圆的方程;
(2)当时,求直线的方程;
(3)是否为定值?如果是,求出其定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系中,点,直线,设圆的半径为,圆心在上.
(1)若圆心也在直线上,过点作圆的切线,求切线的方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
己知圆C: (x – 2 )2 + y 2 =" 9," 直线l:x + y = 0.
(1) 求与圆C相切, 且与直线l平行的直线m的方程;
(2) 若直线n与圆C有公共点,且与直线l垂直,求直线n在y轴上的截距b的取值范围;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com