精英家教网 > 高中数学 > 题目详情
10.已知A(3,2),B(-4,1),C(0,-1),点Q线段AB上的点,则直线CQ的斜率取值范围是$(-∞,-\frac{1}{2}]∪[1,+∞)$.

分析 kCA=1,kCB=$-\frac{1}{2}$.根据点Q线段AB上的点,即可得出直线CQ的斜率取值范围.

解答 解:kCA=$\frac{-1-2}{0-3}$=1,kCB=$\frac{-1-1}{0-(-4)}$=$-\frac{1}{2}$.
∵点Q线段AB上的点,
则直线CQ的斜率取值范围是:$(-∞,-\frac{1}{2}]∪[1,+∞)$.
故答案为:$(-∞,-\frac{1}{2}]∪[1,+∞)$.

点评 本题考查了直线的斜率计算公式及其应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知实数x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{4x+3y-12≤0}\\{y-2≥0}\end{array}\right.$,则z=$\frac{3x-y+2}{x+1}$的最大值为(  )
A.$\frac{9}{5}$B.$\frac{3}{2}$C.$\frac{25}{16}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知中心在原点,焦点在y轴上的双曲线的离心率为$\sqrt{5}$,则它的渐近线方程为y=±$\frac{1}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a>0且a≠1,关于x的方程|ax-1|=5a-4有两个相异实根,则a的取值范围是$(\frac{4}{5},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图所示几何体的三视图,则该几何体的表面积为16+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知四棱锥P-ABCD的正视图1是一个底边长为4、腰长为3的等腰三角形,图2、图53分别是四棱锥P-ABCD的侧视图和俯视图.
(1)求证:AD⊥PC;
(2)求四棱锥P-ABCD的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.点P(-1,2)到直线3x-4y+12=0的距离为(  )
A.5B.$\frac{1}{5}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,三棱锥P-ABC中,BC⊥平面PAB,PA=PB=AB=6,BC=9,点M,N分别为PB,BC的中点.
(1)求证:AM⊥平面PBC;
(2)E是线段AC上的点,且AM∥平面PNE.
①确定点E的位置;②求直线PE与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=xlnx+x2-ax+2(a∈R)有两个不同的零点x1,x2
(1)求实数a的取值范围;
(2)求证:x1•x2>1.

查看答案和解析>>

同步练习册答案