精英家教网 > 高中数学 > 题目详情

已知等差数列的首项为,公差为,等比数列的首项为,公比为.
(1)求数列的通项公式;
(2)设第个正方形的边长为,求前个正方形的面积之和.
(注:表示的最小值.)

(1);(2).

解析试题分析:(1)利用等差数列和等比数列的通项公式分别求出数列的通项公式;(2)先利用作差法确定的大小,在比较两者的大小是,一是利用数学归纳法,方法二是利用二项式定理,确定数列的通项公式(用分段数列的形式来进行表示,然后对的取值进行分类讨论,进而求出.
试题解析:(1)由于数列是以为首项,以为公差的等差数列,所以
又因为数列是以为首项,以为公比的等比数列,因此
2)因为

易知当时,
下面证明当时,不等式成立.
方法1:(i)当时,,不等式显然成立,
(ii)假设当时,不等式成立,即
则有
这说明当时,不等式也成立,
综合(i)(ii)可知,不等式对的所有整数都成立.
所以当时,
方法2:因为当时,


所以当时,,所以

时,

时,




.
综上可知,.
考点:1.等差数列与等比数列的通项公式;2.利用作差啊比较大小;3.数学归纳法;4二项式定理;5.数列求和

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列{an},,,记,
,若对于任意,A(n),B(n),C(n)成等差数列.
(1)求数列{an}的通项公式;
(2)求数列{|an|}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列{an}的前n项和为Sn,首项为a1,且,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)若=,设cn=,求数列{cn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设{an}是公比为正数的等比数列,a1=2,a3=a2+4,
(1)求{an}的通项公式;
(2)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a3·a4=117,a2+a5=22.
(1)求数列{an}的通项公式an.
(2)若数列{bn}是等差数列,且bn=,求非零常数c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范围.
(2)求{an}前n项和Sn最大时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列是等差数列,且
(1)求数列的通项公式  (2)令,求数列前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知Sn是等比数列{an}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18.
(1)求数列{an}的通项公式;
(2)是否存在正整数n,使得Sn≥2 013?若存在,求出符合条件的所有n的集合;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均不相等的等差数列{an}的前5项和为S5=35,且a1+1,a3+1,a7+1成等比数列.
(1)求数列{an}的通项公式;
(2)设Tn为数列的前n项和,问是否存在常数m,使Tnm,若存在,求m的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案