精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于(
A.11或18
B.11
C.18
D.17或18

【答案】C
【解析】解:f′(x)=3x2+2ax+b, ∴
② 当 时,f′(x)=3(x﹣1)2≥0,∴在x=1处不存在极值;
②当 时,f′(x)=3x2+8x﹣11=(3x+11)(x﹣1)
∴x∈( ,1),f′(x)<0,x∈(1,+∞),f′(x)>0,符合题意.
,∴f(2)=8+16﹣22+16=18.
故选C.
根据函数在x=1处有极值时说明函数在x=1处的导数为0,又因为f′(x)=3x2+2ax+b,所以得到:f′(1)=3+2a+b=0,又因为f(1)=10,所以可求出a与b的值确定解析式,最终将x=2代入求出答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l经过直线3x+4y﹣2=0与直线2x+y+2=0的交点P,且垂直于直线x﹣2y﹣1=0.求:
(Ⅰ)直线l的方程;
(Ⅱ)直线l与两坐标轴围成的三角形的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C1:y2=8x与双曲线C2 (a>0,b>0)有公共焦点F2 , 点A是曲线C1 , C2在第一象限的交点,且|AF2|=5.
(1)求双曲线C2的方程;
(2)以双曲线C2的另一焦点F1为圆心的圆M与直线y= 相切,圆N:(x﹣2)2+y2=1.过点P(1, )作互相垂直且分别与圆M、圆N相交的直线l1和l2 , 设l1被圆M截得的弦长为s,l2被圆N截得的弦长为t,问: 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四组函数中,表示同一函数的是(
A.f(x)=|x|,g(x)=
B.f(x)=lg x2 , g(x)=2lg x
C.f(x)= ,g(x)=x+1
D.f(x)= ? ,g(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题R,p:x∈R使 ,命题q:x∈R都有x2+x+1>0,给出下列结论:
①命题“p∧q”是真命题
②命题“命题“p∨q”是假命题
③命题“p∨q”是真命题
④命题“p∨q”是假命题
其中正确的是( )
A.②④
B.②③
C.③④
D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在R上的偶函数f(x)满足f(x+2)=f(x),f′(x)是f(x)的导函数,当x∈[0,1]时,0≤f(x)≤1;当x∈(0,2)且x≠1时,x(x﹣1)f′(x)<0.则方程f(x)=lg|x|根的个数为(
A.12
B.1 6
C.18
D.20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长郡中学学习兴趣小组通过随机询问某地100名高中学生在选择座位时是否挑同桌,得到如下列联表:

(1)从这50名男生中按是否挑同桌采取分层抽样的方法抽取一个容量为5的样本,现从这5人中随机选取3人做深层采访,求这3名学生中至少有2名要挑同桌的概率;

(2)根据以上列联表,是否有95%以上的把握认为“性别与在选择座位时是否挑同桌”有关?下面的临界值表仅供参考:

(参考公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{bn}(bn>0)的首项为1,且前n项和Sn满足Sn﹣Sn1= + (n≥2).
(1)求{bn}的通项公式;
(2)若数列{ }前n项和为Tn , 问Tn 的最小正整数n是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C所对的边分别为a,b,c.向量 =(a, b)与 =(cosA,sinB)平行.
(Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面积.

查看答案和解析>>

同步练习册答案