精英家教网 > 高中数学 > 题目详情
(文)已知函数f(x)=b•ax(其中a,b为常数且a>0,a≠1)的反函数的图象经过点A(4,1)和B(16,3).
(1)求a,b的值;
(2)若不等式(
1a
2x+b1-x-|m-1|≥0在x∈(-∞,1]上恒成立,求实数m的取值范围.
分析:(Ⅰ)由题意可得,f(x)经过点(1,4),(3,16),代入可求a,b
(2)由(
1
2
)
2x
+21-x≥|m-1|在x∈(-∞,1]上恒成立?[(
1
2
)
2x
+21-x]min≥|m-1|恒成立,可求m的范围
解答:解:(Ⅰ)∵f-1(x)的图象经过点A(4,1)和B(16,3).
∴f(x)经过点(1,4),(3,16)
ab=4
ba3=16

∴a=b=2,f(x)=2x+1
∵(
1
a
2x+b1-x-|m-1|≥0在x∈(-∞,1]上恒成立,
∴不等式(
1
2
)
2x
+21-x≥|m-1|在x∈(-∞,1]上恒成立,
[(
1
2
)
2x
+21-x]min≥|m-1|恒成立,…(8分)
设t=(
1
2
)
x
,g(t)=t2+2t
∵x≤1
∴t
1
2

∴g(t)min=g(
1
2
)=
5
4

∴|m-1
5
4

-
1
4
≤m≤
9
4

值范围是[-
1
4
9
4
]…(12分)
点评:本题主要考查了互为反函数的图象对称关系的应用,函数的恒成立与函数的最值求解的相互转化关系的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(文)已知函数f(x)=x3+ax2+bx+2与直线4x-y+5=0切于点P(-1,1).
(Ⅰ)求实数a,b的值;
(Ⅱ)若x>0时,不等式f(x)≥mx2-2x+2恒成立,求实数m的取值范围.

(理) 已知正四棱柱ABCD-A1B1C1D1底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交线段B1C于点F.以D为原点,DA、DC、DD1所在直线分别为x、y、z轴建立空间直角坐标系D-xyz,如图.
(Ⅰ)求证:A1C⊥平面BED;
(Ⅱ)求A1B与平面BDE所成角的正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知函数f(x)=ax3-bx2+9x+2,若f(x)在x=1处的切线方程是3x+y-6=0.
(1)求f(x)的解析式及单调区间;
(2)若对于任意的x∈[
14
,2]
,都有f(x)≥t2-2t-1成立,求函数g(t)=t2+t-2的最小值及最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知函数f(x)=x2lnx.
(I)求函数f(x)的单调区间;
(II)若b∈[-2,2]时,函数h(x)=
1
3
x3lnx-
1
9
x3-(2a+b)x
,在(1,2)上为单调递减函数.求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知函数f(x)=x3-x.
(I)求曲线y=f(x)在点M(t,f(t))处的切线方程;
(II)设常数a>0,如果过点P(a,m)可作曲线y=f(x)的三条切线,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知函数f(x)=2sinx+3tanx.项数为27的等差数列{an}满足an∈(-
π
2
π
2
)
,且公差d≠0.若f(a1)+f(a2)+…+f(a27)=0,则当k值为
13
13
时有f(ak)=0.

查看答案和解析>>

同步练习册答案