精英家教网 > 高中数学 > 题目详情
已知P={x|x2-8x-20≤0},S={x|1-m≤x≤1+m}
(1)是否存在实数m,使x∈P是x∈S的充要条件,若存在,求出m的取值范围;
(2)是否存在实数m,使x∈P是x∈S的必要条件,若存在,求出m的取值范围.
分析:(1)由于x∈P是x∈S的充要条件,则集合P与集合S相等;
(2)由于x∈P是x∈S的必要条件,则S⊆P.再结合集合关系求出实数m即可.
解答:解:由于P={x|x2-8x-20≤0}={x|-2≤x≤10},
(1)要使x∈P是x∈S的充要条件,
则P=S,即
1-m=-2
1+m=10

而此方程组无解,
则不存在实数m,使x∈P是x∈S的充要条件;
(2)要使x∈P是x∈S的必要条件,
则S⊆P,
①当S=φ时,1-m>1+m,即m<0满足题意;
②当S≠φ时,则1-m≤1+m,得m≥0,
要使S⊆P,即有
1-m≥-2
1+m≤10
,得m≤3,
即得0≤m≤3,
综上可得,当实数m≤3时,使x∈P是x∈S的必要条件.
点评:本题考查的判断充要条件的方法,我们可以根据充要条件的定义进行判断,
①若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;
②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;
③判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知P={x|x2-3x+2=0},Q={x|ax-2=0},Q⊆P,求a的值.
(2)已知A={x|2≤x≤3},B={x|m+1≤x≤2m+5},B⊆A,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P={x|x2-8x-20≤0},Q={x||x-1|≤m},m∈R.
(1)若P∪Q=P,求实数m的取值范围;
(2)是否存在实数m,使得方程|x-1|=m至少有一个解x满足“x∈P”?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P={x|x2-3x+2=0},Q={x|ax-2=0},Q⊆P,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P={x|x2-8x-20≤0},S={x|1-m≤x≤1+m},是否存在实数m,使x∈P是x∈S的必要不充分条件,若存在,求出m的范围.

查看答案和解析>>

同步练习册答案