精英家教网 > 高中数学 > 题目详情
6.执行如图所示的程序框图,则输出的结果为(  )
A.7B.9C.10D.11

分析 模拟程序的运行,依次写出每次循环得到的i,S的值,当S=-lg11时,满足条件,退出循环,输出i的值为9,从而得解.

解答 解:模拟程序的运行,可得:
$i=1,S=lg\frac{1}{3}=-lg3>-1$,否;
$i=3,S=lg\frac{1}{3}+lg\frac{3}{5}=lg\frac{1}{5}=-lg5>-1$,否;
$i=5,S=lg\frac{1}{5}+lg\frac{5}{7}=lg\frac{1}{7}=-lg7>-1$,否;
$i=7,S=lg\frac{1}{7}+lg\frac{7}{9}=lg\frac{1}{9}=-lg9>-1$,否;
$i=9,S=lg\frac{1}{9}+lg\frac{9}{11}=lg\frac{1}{11}=-lg11<-1$,
是,输出i=9,
故选:B.

点评 本题考查的知识点是程序框图,在写程序的运行结果时,我们常使用模拟循环的变法,但程序的循环体中变量比较多时,要用表格法对数据进行管理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知奇函数$f(x)=a-\frac{1}{{{2^x}+1}}\;,\;\;x∈({-1\;,\;\;1})$.
(Ⅰ)求a的值;
(Ⅱ)若函数f(x)满足f(x-1)+f(x)<0,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设f(x)=lgx,若f(1-a)-f(a)>0,则实数a的取值范围为$(0,\frac{1}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.抛物线y=ax2的准线方程是y=-1,则a的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若复数z满足z•i=1+i(i是虚数单位),则z的共轭复数是1+i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,角A,B,C的对边分别是a,b,c,已知b=2,c=2$\sqrt{2}$,且C=$\frac{π}{4}$,则△ABC的面积为$\sqrt{3}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列说法正确的是(  )
(1)已知等比数列{an},则“数列{an}单调递增”是“数列{an}的公比q>1”的充分不必要条件;
(2)二项式${({2x+\frac{1}{{\sqrt{x}}}})^5}$的展开式按一定次序排列,则无理项互不相邻的概率是$\frac{1}{5}$;
(3)已知$S=\int_0^{\frac{1}{2}}{\sqrt{\frac{1}{4}-{x^2}}}dx$,则$S=\frac{π}{16}$;
(4)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为40.
A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=ex-ax2+1,曲线y=f(x)在x=1处的切线方程为y=bx+2.
(1)求a,b的值;
(2)当x>0时,求证:f(x)≥(e-2)x+2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{64π}{3}+2\sqrt{3}$B.$\frac{56π}{3}+4\sqrt{3}$C.18πD.22π+4

查看答案和解析>>

同步练习册答案