精英家教网 > 高中数学 > 题目详情
设f(x)是偶函数,其定义域为[-4,4],且在[0,4]内是增函数,又f(-3)=0,则
f(x)sinx
≤0
的解集是
 
分析:先利用f(x)是偶函数的对称性,再结合定义域的单调性画出此函数的简图和正弦函数的图象,最后利用数形结合的思想求解不等式即得.
解答:精英家教网解:∵f(x)是偶函数,其定义域为[-4,4],
∴f(x)的图象关于y轴对称,
且在[0,4]内是增函数,
故在[-4,0]内是减函数,
在同一坐标系中画出y=f(x)与y=sinx的简图.
由图得:
在区间[-4,4],函数y=f(x)与y=sinx的函数值异号的区间为:
(-π,-3]或(0,3]或(π,4].
故答案为:(-π,-3]∪(0,3]∪(π,4].
点评:本小题主要考查函数单调性的应用、函数奇偶性的应用、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是偶函数,且在(0,+∞)内是减函数,又f(-3)=0,则xf(x)>0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是偶函数,且在(0,+∞)是增函数,又f(-3)=0,则x•f(x)<0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是偶函数,且当x≥0时,f(x)=
x(3-x)       ,0≤x≤3
(x-3)(a-x)      ,x>3

(1)当x<0时,求f(x)的解析式;
(2)设函数f(x)在区间[-5,5]上的最大值为g(a),试求g(a)的表达式;
(3)若方程f(x)=m有四个不同的实根,且它们成等差数列,试探求a与m满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是偶函数,且在(0,+∞)上是减函数,又f(-1)=0,则xf(x)<0的解集是(  )
A、(-1,1)B、(1,+∞)C、(-1,0)∪(1,+∞)D、(-∞,-1)∪(0,1)

查看答案和解析>>

同步练习册答案